Understanding the Value of Travel Time Reliab for Freight Transportation

Presenter :

Xia Jin, PhD, Assistant Professor Kollol Shams, Graduate Student Md Sakoat Hossan, Graduate Student Florida International University

UTC Conference for the Southeastern Region , Alabama March 26, 2015

Outline

- Background
- Purpose
- Objectives
- Challenges
- Tasks :
 - Task 1 : Literature Review
 - Task 2 : Stated Preference Survey Design
 - Others

Background

Growing demand for freight transportation Better understanding of freight behavior Increasing role of reliability in freight transportation

Purpose

- Research in understanding the behavior paradigms in the freight industry has lagged behind.
- Only a handful of studies from other countries investigated Value of Reliability (VOR) for freight users.
- This study aims to fill the knowledge gap in understanding how the freight community value travel time reliability in their transportation decisions.

Purpose

- Support strategic, proactive and responsive investment decisions that reflect the needs of freight stakeholders, which requires
 - better understanding f how the users (shippers and carriers) respond to system changes in productivity, reliability and capacity, and
 - advanced methods and tools in evaluating the effectiveness of alternative freight management and operational strategies.

Objectives

- Synthesize existing studies on VOR and identify knowledge and data gap;
- Conduct stated preference survey among freight system users to understand their transportation choice decision-making;
- Develop econometric models to estimate VOR by stratification, such as, commodity type, shipping distance, and shipment type, etc.
- Recommend a framework in incorporating VOR in freight analysis and project evaluation.

Challenges

- Insufficient knowledge in freight transportation and supply chain management, and lack of mechanism to incorporate the knowledge into the freight planning process;
- Lack of data in supporting research and modeling efforts as freight movement data tend to be proprietary in nature, aggregate in geographic scale, and difficult to collect from private sectors; and
- Lack of guidance in freight sector survey design in constructing realistic alternative scenarios and questionnaire for the respondents.

Project Tasks

- Task 1: Literature Review
- Task 2: Stated Preference Survey Design
- **Task 3:** Technical Advisory Committee (TAC) Establishment
- Task 4: Survey Implementation
- Task 5: Data Processing and Model Development
- Task 6: Framework Recommendation
- Task 7: Final Report

Project Tasks

- Task 1 : Literature Review
 - A wealth of knowledge in VOR for passenger travel
 - Not limited to only stated preference reliability papers
 - Few studies in the freight industry from other countries
 - SHRP2 reliability projects
 - Nos. of Paper : 83

Project Tasks 1: Literature Review

- Major findings
 - Reliability Measures :
 - Standard variation of Travel time
 - Probability of success or failure against a pre-established threshold value
 - Methods to Estimate the VOR for Freight :
 - Stated Preference (Shippers vs Carriers)
 - Inventory based (tied to inventory management decisions)

Project Tasks 1: Literature Review

- Major findings
 - Market Segmentation :
 - Previous studies focused mostly on mode choice or route choice
 - Common categories :
 - Commodity Type (time sensitivity, amount, values)
 - Shipment characteristics (such as type, weight, distance)
 - Firm's Characteristics (size, transport ownership, inventory management)
 - Miscellaneous (time of day, congestion vs non-congestion, regional differences)

Project Tasks 1: Literature Review

- Major findings
 - Survey Design :
 - Previous studies mostly used Orthogonal experiment
 - Very few studies used Others experiment, such as Optimal- efficiency, or Adaptive Stated Preference
 - Trade-off among statistical efficiency, complexity, monetary budget and quality of responses
 - Model Specification & Development :
 - Most commonly used attributes : Travel cost, Travel time, Reliability, Loss and/or damage, and Service Frequency & Flexibility
 - Mixed Logit, MNL (with bootstrapping to account for the IIA violation)

Project Tasks 2 : SP Survey Design

- Market
 Segmentation
- Sample Design
- Recruitment Instrument Design
- SP Choice
 Experimental Design

Project Tasks 2 : SP Survey Design

- Market Segmentation
 - Commodity Type for shippers: Perishable Commodity, Time Sensitivity
 - Shipping Distance for carriers: <50 , 50-300 , and 300+ miles.
 - Shipment Type: Containerized or Non-Containerized
 - Mode: Truck (Light, Medium, and Heavy), Rail, Waterways and Air
- Sample Design & Data Collection
 - Stratification-based random sampling strategy
 - Database from Local Chamber & TranSearch
- Recruitment Instrument Design
 - Information describing the firm
 - Characteristics of a typical shipment

Project Tasks 2 : SP Survey Design

• SP Choice Experimental Design

Experiment Type	Alternatives Type	Nos. of Attributes	Attributes (Level)	Experimental Design	Road	Rail	Air	Waterways
C1	Within	3	Travel time (5), Cost (5), Reliability (5)	Orthogonal	V		٧	v
C2	Within	4	Travel time (5), Cost (5), Reliability (5), Departure time (2)	Orthogonal	٧			
C3	Between Modes (Road & Rail)	5	Travel time (5), Cost (5), Reliability (5), Service Flexibility (2), Probability of Property Damage (2)	Manual (Bradley)	v	V		
C4	Between Modes (Road & Rail)	6	Travel time (5), Cost (5), Reliability (5), Service Flexibility (2), Probability of Property Damage (2), Departure time (2)	Orthogonal	V	V		

Questions & Answers

Kollol Shams , Graduate Student Department of Civil and Environmental Engineering Email: ksham004@fiu.edu

Md Sakoat Hossan , Graduate Student Department of Civil and Environmental Engineering Email: mhoss009@fiu.edu Xia Jin, Ph.D., AICP Department of Civil and Environmental Engineering Florida International University 10555 W. Flagler Street, EC3603, Miami, Florida 33174 Tel: (305) 348-2825 Fax: (305) 348-2802 Email: xjin1@fiu.edu