

Bringing Freight Components into Statewide and Regional Travel Demand Forecasting

Center for Quality Growth and Regional Development Georgia Institute of Technology

> PI: David Jung-Hwi Lee Co-PI: Catherine L. Ross

University Transportation Center (UTC) Conference for the Southeastern Region March 24, 2014

Research Overview

Need

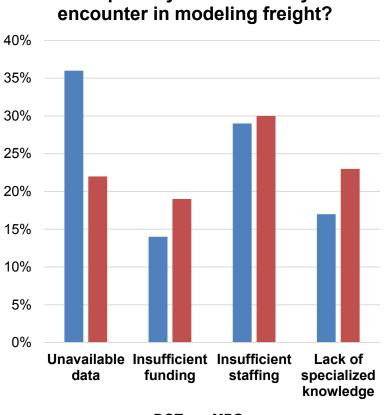
DOTs and MPOs need freight demand models that are <u>reliable</u>, <u>accurate</u>, and <u>approachable</u>.

Purpose

- Leverage new data sources
- Benchmark freight modeling best practices
- Develop longterm guidelines for freight demand models

Project Goals

- Study best practices and extent of usage of GPS data in freight modeling
- Build prototype tourbased truck models with GPS-based truck data
- Test model improvements compared with existing models


Problem Statement

- Lack of Urban Freight Demand Models
- Few practical freight forecasting models
- More significant in small and medium-sized MPOs
- Models missing freight component could overestimate capacity
- Incapability to provide adequate info to decision makers

DOT and MPO Survey Summary of Results

- Freight models are still relatively • rare – about half of DOTs and one quarter of MPOs
- Most models are vehicle-based ٠
- GPS data remains rare used in ٠ about one in five vehicle models
- Lack of data remains a large obstacle to freight modelers -GPS data can help

What primary obstacles do you

DOTs MPOs

Tour-based Truck Model Conceptual Framework

Tour Main

Destination Choice

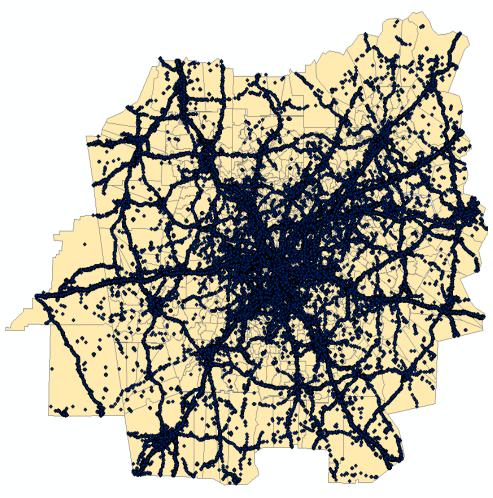
Intermediate Stop Model

Stop Location Model


Time of Day

Trip Accumulator

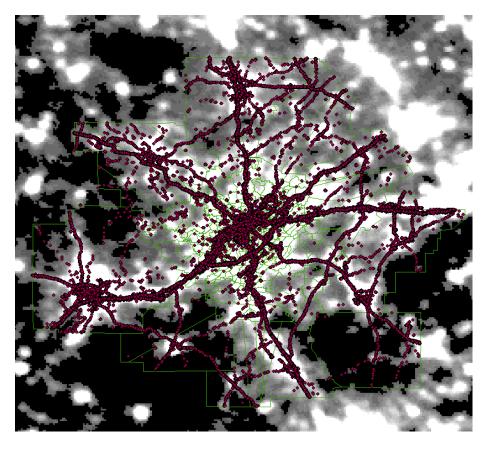
Traffic Assignment



GPS Data Source

GPS Data Source

Atlanta TRUCK RECORD:


- ATL_1A_02.2011 (1,717,004 records)
- ATL_1A_05.2011 (1,540,362 records)
- ATL_1A_07.2011 (1,452,661 records)
- ATL_1A_10.2011 (1,349,400 records)
- ATL_1B_02.2011 (1,507,129 records)
- ATL_1B_05.2011 (1,973,480 records)
- ATL_1B_07.2011 (2,201,814 records)
- ATL_1B_10.2011 (2,321,084 records)

Total 14,062,934 records

ATRI provide 8 weeks of truck GPS data for 5,000 different trucks in 2011 (2 weeks in each season).

Georgia

GPS Data Source

Birmingham TRUCK RECORD:

- BMH_1A_02.2011 (497,762 records)
- BMH_1A_05.2011 (465,937 records)
- BMH_1A_07.2011 (387,992 records)
- BMH_1A_10.2011 (400,817 records)
- BMH_1B_02.2011 (570,629 records)
- BMH_1B_05.2011 (688,292 records)
- BMH_1B_07.2011 (721,516 records)
- BMH_1B_10.2011 (755,895 records)

Total 4,488,840 records

ATRI provide 8 weeks of truck GPS data for 5,000 different trucks in 2011 (2 weeks in each season).

GPS Data Truck Records

• Truckid:	This is a unique truck ID.
 Parking_from: 	This indicates if the vehicle is in a known truck stop at the
	first point: 1 = at a truck stop, 0 = not at a truck stop
 Readdate_from: 	This is the first date/time stamp in a series
• TAZ_2000_from:	This is the TAZ ID for the first position read in a series.
 To_readdate: 	This is the second time stamp in a series
• To_TAZ_200:	This is the second TAZ ID in a series
 To_Parking: 	This indicates if the vehicle is in a known truck stop at the second point: 1 = at a truck stop, 0 = not at a truck stop
 Distance traveled: 	This is distance traveled in miles from point A to point B. It uses the great circle distance equation (i.e. it is not snapped to a roadway).

1	TRUCKID	DATEFROM	TAZFROM	PARKFROM	DATETO	TAZTO	PARKTO	DISTANCE	HRFROM	HRTO	TIME	SPEED	DAY	WEIGHT	STATUS
1757	00147704916385437	02-17-11 10:59:34	1348	0	02-17-11 12:08:04	1348	0	0.000000000	10.9928	12.1344	1.1417	0.0	17	0.0526	L
1758	0014827042235482023992	02-16-11 00:09:04	401	0	02-16-11 00:15:27	433	0	2.919259241	0.1511	0.2575	0.1064	27.4	16	0.0526	F
1759	0014827042235482023992	02-16-11 00:15:27	433	0	02-16-11 00:15:49	433	0	0.020680091	0.2575	0.2636	0.0061	3.4	16	0.0526	
1760	0014827042235482023992	02-16-11 00:15:49	433	0	02-16-11 00:46:05	1440	0	16.713765120	0.2636	0.7681	0.5044	33.1	16	0.0526	
											Ge	orgia Tech	Centur and F	er for Quality G Regional Devel	Growth opment

GPS Data Processing

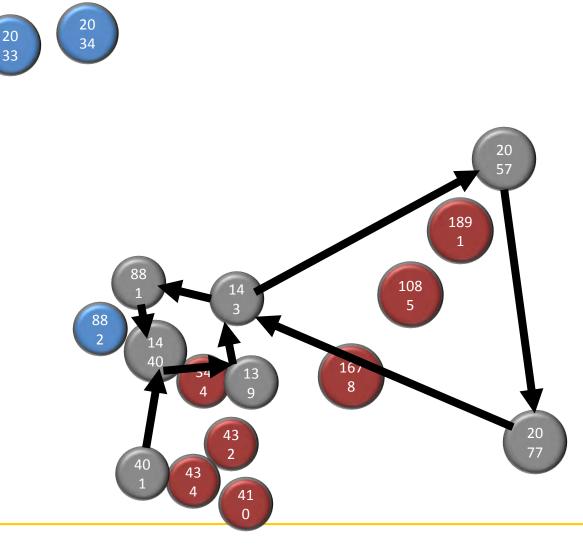
Delete records on weekends and holidays.

Remove records with improper geocoding

Determination on Stopped; Starting to move; in motion; or coming to stop

Converting TRUCK records to TRIPS

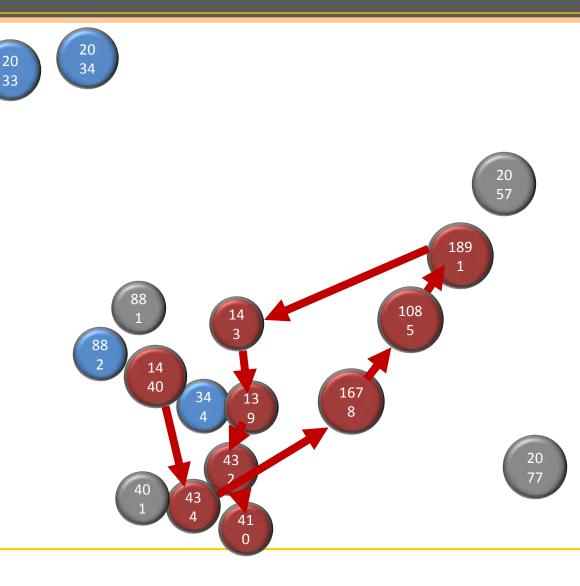
Converting TRIPS records to TOURS


Define "TOUR"

- All the movements from a Start location until the truck return to the same location
- From a Start location until midnight of that day
- Multi-day tours were NOT considered

12,701,995 TRUCK Records 713,306 TRIPS 220,752 TOURS

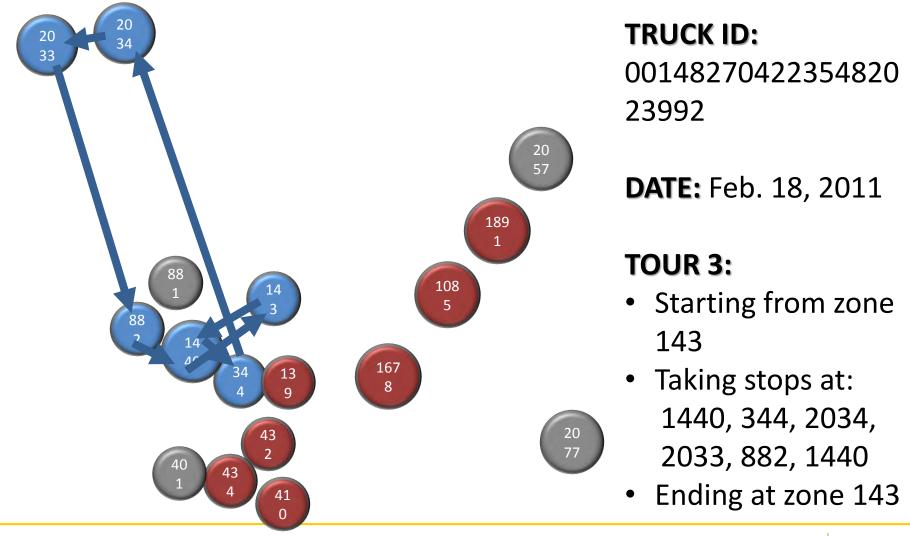
	Tours	Stops	Stops/Tour
1/1	111,424	333,899	3.00
I/X	25,751	39,990	1.55
X/I	50,845	69,858	1.37
X/X	32,732	48,802	1.49
Total	220,752	492,549	2.23


TRUCK ID: 0014827042235482023 992

DATE: Feb. 16, 2011

TOUR 1:

- Starting from zone
 401
- Taking stops at:
 - 1440, 139, 143, 2057,
 - 2077, 143, 881
- Ending at zone 1440


TRUCK ID: 0014827042235482023 992

DATE: Feb. 17, 2011

TOUR 2:

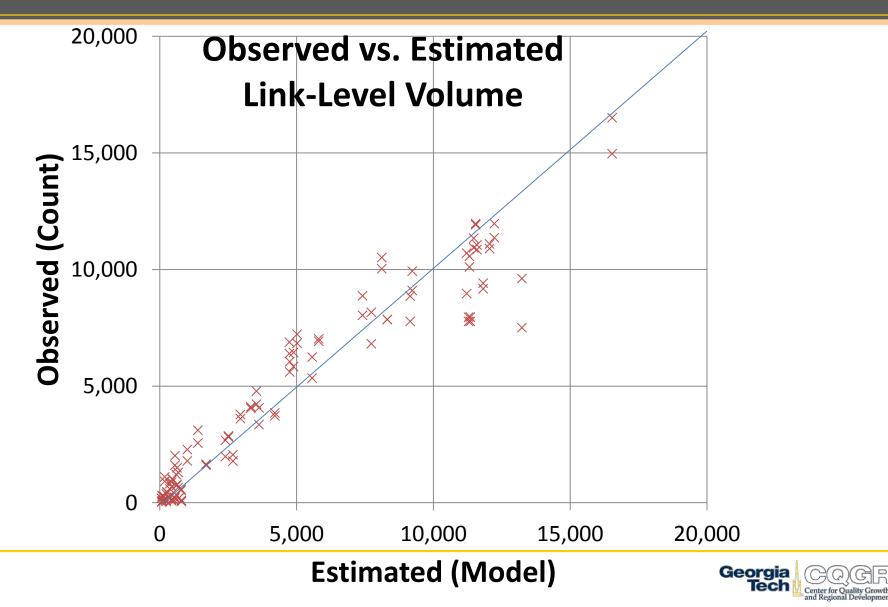
- Starting from zone 1440
- Taking stops at:
 - 434, 1678, 1085,
 - 1891, 143, 139, 432
- Ending at zone 410

TRUCK ID: 00148270422354820 23992 **DATE:** Feb. 16~18,

2011

TRUCK:

 224 cleaned Truck Records

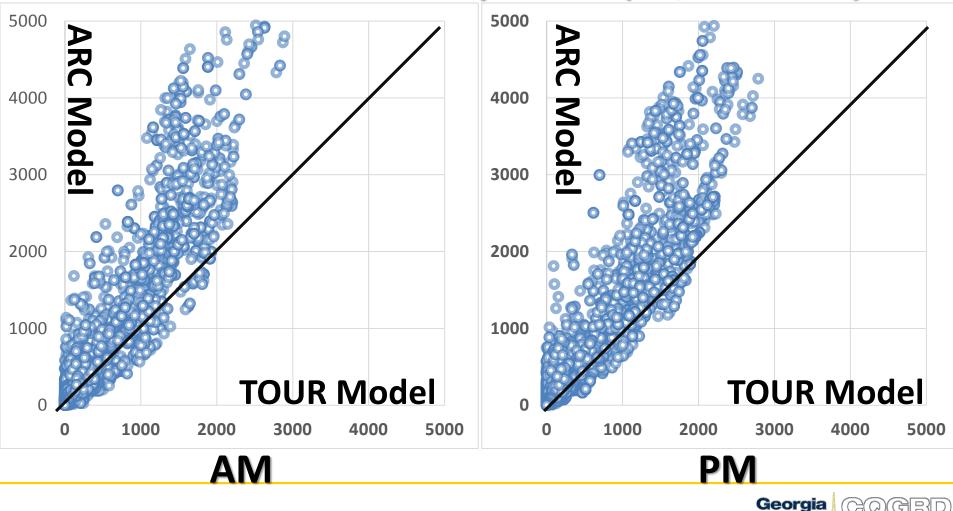

> Georgia Tech

Center for Quality Growth and Regional Developmen

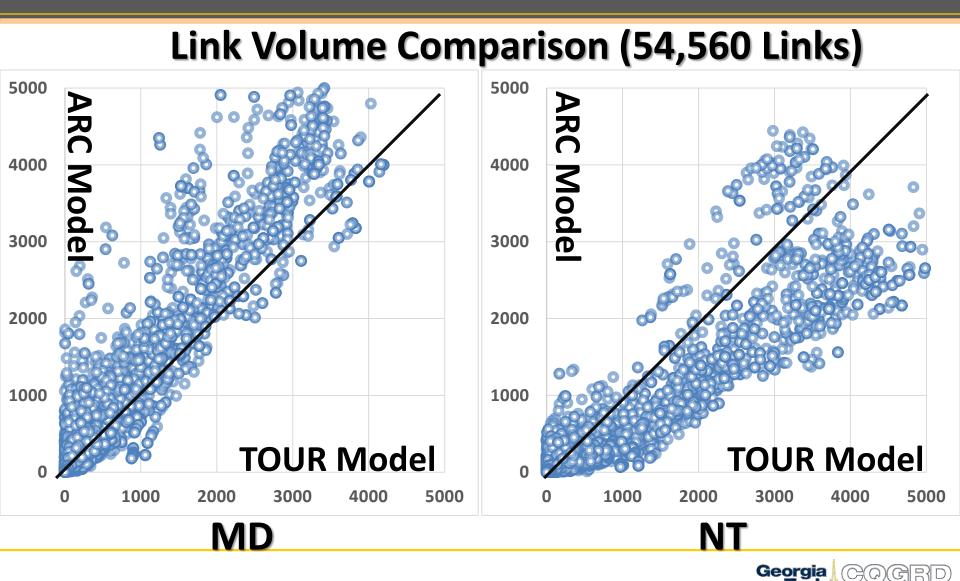
TRIPS:

- 23 trips TOURS:
 - 3 tours

Tour-based Truck Model Validation


Key Obstacles and Challenges

- GPS data is inconsistent
- Nothing is known about GPS sampling
- We have no description of truck or operator
- External station geocoding was not sufficiently accurate



Trip-based vs. Tour-based Model Atlanta

Trip-based vs. Tour-based Model Atlanta

Conclusions and Future Research

Conclusions

- GPS data can create robust tour-based freight models
- GPS data requires extensive processing to be useful
- Tour based structure reflects truck travel more accurately.
- Future steps will compare truck model results with existing freight models in Atlanta and Birmingham.
- The results are likely to provide new improvements and directions for future research.

Future Research

- Develop methodology and GPS data source that distinguishes different types of trucks
- Work with modelers in practice to implement tour-based truck models with GPS data
- Examine usefulness for wideranging applications – air quality models, traffic congestion forecasts, and investment decision making

