

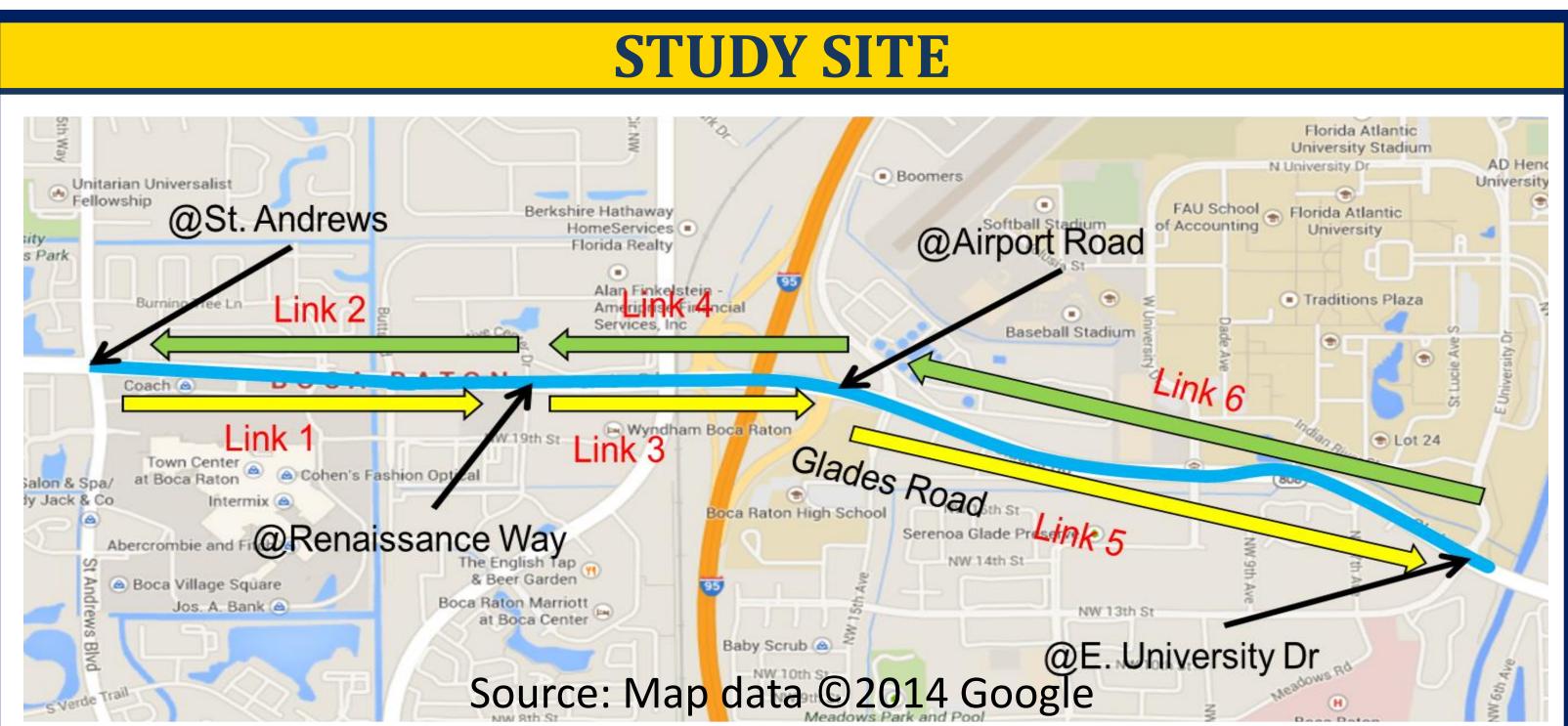
Xuanwu Chen¹, Ph.D. Candidate, Yan Xiao¹, Ph.D., P.E., Mohammed Hadi¹, Ph.D., P.E., Lily Elefteriadou², Ph.D. ¹ Department of Civil and Environmental Engineering, Florida International University, Miami, FL 33174 ² Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL 32611

INTRODUCTION AND OBJECTIVE The main performance measures used in assess an optimization of signal timing have been mo measures (e.g. travel time, delays). Limited efforts have been conducted to incorp environmental or safety impacts in optimization. Despite the availability of some studies on subjects, no guidelines or tools are. This STRIDE project investigates signal t methods for assessment of environmental and impacts, in combination with mobility measure **SUMMARY OF PREVIOUS STUDIES** Pattern color indicates: **Other Related Researche** White: Literature Review Skabardonis, el al (2012) Yellow: Analytical Model PB Americas, et al (2013a) ong, et al (2013) Chamberlin, et al Noise Zhao, et al (2013) Skabardonis, (Desarnaulds, et al (2004) De Coensel, et al (2012) PB Americas, et al (2013b) Shabihkhani, et al (201 Guo, et al (2013) Hallmark, et al (2000) Emission Lin, et al (2011) Ghafghazi, et al (2013) De Coensel, et al (2011) Kim, et al (2013) Crumert, et al (2013) Park, et al (2009) Liao, et al (1996) Stevanovic, (2009) **Fuel Consumption** ang, et al(2013)**SAFETY STUDIES** Gap-acceptance events-Lane-change crossing flows **Event Files** Simulation Model ig-leading turns Gap-acceptan Braking-teading brakes

MaxS

SSAM DeltaS

nitial DR CPL, CLSP, CLEP


TTC

PET

Frequency, severity, and type of conflicts

Signal Timing Optimization with Consideration of **Environmental and Safety Impacts**

		ENVIRONMEN	TAL
ent	Authors	Software/Model/Control Device Used	
У	lidenet, et al (2004)	CRONOS Adaptive Control	
Cha Lia Ska	amberlin, et al (2013)	OMDG, TOTEMS	
Lia	o, et al (1996)	AFCM, Webster's Delay Model, TEXAS	Lon
Ska	bardonis, et al (2012)	CORSIM	
Kir	n, et al (2013)	Regression, CART	1.4
Zha	ng, et al (2013)	CTM, Gaussian Plume Dispersion Model, GA	
Skat	oardonis (2001)	TRANSYT-7F	
Sha	bihkhani, et al (2013)	Aimsun, NGSIM, MOVES	S
Ste	evanovic, et al (2009)	VISSIM, CMEM, VISGAOST	
Par	rk, et al (2009)	GA, CORSIM, VT-Micro	
De	Coensel, et al (2012)	PARAMICS, VERSIT+	
	Guo (2013)	SYNCHRO, VISSIM, MOVES	Positiv
Son	ag, et al (2013)	OVM, GFM, FVDM, Wiedemann, Fritzsche	Inaccur
G	rumert, et al (2013)	SUMO, ARTEMIS/HEBEFA, CMEM	
Zha	no, et al (2013)	TRANSIMS, PARAMICS, MOVES	
Gh	afghazi, et al (2013)	VISSIM, VISUM, MOVES	
Ha	allmark, et al (2000)	MEASURE, CORSIM, MOBILE5a	CO Re
	Liao (2013)	AFCM, DyanTAIWAN, TRANSYT- 7F, SYNCHRO	AFCM
Li	n, et al (2011)	MOVES, DynusT	Using N hig

TUDIES

Results (Types)

-4% (CO₂) -14% (delay costs)

Inconsistences (CO, PM_{10})

nger cycle time are needed for fuel consumption

Reduction (CO)

4708 m/s² and 2.2770 m/s² (aggressive, extreme aggressive) Up to -48% (CO)

+93%

-7.8% (fuel consumption) -7.7% (travel time) -13.8% (delay) -12.5% (stops)

Stops contributes the most for CO₂ emissions

 $-1\% \sim -1.5\%$ (fuel consumption)

-2.8% (fuel consumption) -3.0% (queue time)

 $-10\% \sim 40\% (CO_2, NO_x, PM_{10})$

ive relationship between delays and emission / fuel consumption

racies are found in the studied car-following models

-2.66% ~ -3.95% (CO) -1.20% (NO_x) $-1.52 \sim -2.78\%$ (CO₂) -1.52% (fuel consumption)

1 vehicles $+ 2^+$ runs $> 2^+$ vehicles + 1 run

+1.50% (CO₂) +0.33% (CO) +1.45% (NO_x) eduction in MEASURE is more significant than in MOBILE5a M performs better to reduce CO₂ emission and fuel consumption MOVES default drive schedules estimate up to 37% gher CO_2 emissions than using the local specific

operating mode distribution.

MOVES RESULTS AT CURRENT STAGE

Operating Mode Distribution Link Driver Schedules Links with average speed & volume ☑ Time Mean Speed (Point Detector Speed) Space Mean Speed (Point Detector Travel Time) ☑ T7F Space Mean Speed (Travel Time)

Link ID	Measure ment	Speed Emission	Speed Emission	T7F Space Mean Speed Emission (grams) (Joules)	
1	CO	216%	100%	81%	
1	NO _x	246%	100%	94%	
1	CO ₂	227%	100%	88%	
1	Energy	227%	100%	88%	
2	CO	250%	100%	96%	
2	NO _x	267%	100%	97%	
2	CO ₂	229%	100%	92%	
2	Energy	229%	100%	92%	
3	CO	227%	100%	109%	
3	NO _x	248%	100%	104%	
3	CO ₂	233%	100%	111%	
3	Energy	233%	100%	111%	
4	CO	250%	100%	83%	
4	NO _x	263%	100%	89%	
4	CO ₂	215%	100%	70%	
4	Energy	215%	100%	70%	
5	CO	313%	100%	232%	
5	NO _x	302%	100%	157%	
5	CO ₂	306%	100%	263%	
5	Energy	306%	100%	263%	
6	CO	176%	100%	542%	
6	NO _x	226%	100%	380%	
6	CO ₂	193%	100%	874%	
6	Energy	193%	100%	874%	
	СО	236%	100%	188%	
Whole	NO _x	258%	100%	154%	
Segment	CO ₂	229%	100%	242%	
	Energy	229%	100%	242%	
STRIDE Southeastern Transportation Research, Innovation, Development and Education Center Lehman Center for Transportation Research at Florida International University					

