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EXECUTIVE SUMMARY  

As global trades increase, the importance of freight demand forecasting gets more and 

more political attention from various levels of governments (federal, state, regional, and 

local).  Proper freight planning based on dependable forecasting tools can lead 

policymakers to develop suitable strategies for regional economic development to 

strengthen regional economic competitiveness in the global economy. Freight modeling 

and forecasting can serve as a basis for private- and public-sector decision making for 

freight infrastructure and other long-term investments. 

Although Federal law requires state departments of transportation (DOTs) and 

metropolitan planning organizations (MPOs) to account for freight in their long-range 

transportation plans (LRTP), transportation improvement programs (TIP), and annual 

work elements, in reality many MPOs and DOTs have faced difficulties in practice mainly 

due to a lack of data and appropriate models  (Federal Highway Administration, 2007). 

This study explores the possibility of a tour-based freight demand model at the 

state/regional level utilizing (1) recently available nationwide Global Positioning System 

(GPS)-based truck movement data, in conjunction with existing data sources such as 

Freight Analysis Framework (FAF), (2) detailed employment databases that provide 

North American Industry Classification System (NAICS) sector breakdowns, and (3) 

regional transport networks which can show all possible paths of freight movements.   

In order to investigate the current state of the practice of freight demand modeling at 

state DOTs and MPOs, this study included a survey which was delivered to 50 state 

Department of Transportation (DOTs) and 381 Metropolitan Planning Organizations 

(MPOs). The survey questions included prevalence of models and studies, model 

characteristics, usage of Global Positioning System (GPS) data, challenges in modeling 
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freight, and consideration of future improvements. The survey results reveal that freight 

models are still relatively rare in applications and most models in practice are vehicle 

based. Usage of GPS data also remains rare. And most importantly, the survey reveals 

that the lack of data remains a large obstacle in developing freight demand models.  

In the literature review section, special focus was placed on several key points:  

A primary focus was to review the increasing importance of freight modelling in MPO 

planning. Freight planning has significant impacts on regional economies, primarily since 

freight planning is closely associated with regional congestion, congestion mitigation and 

infrastructure development that influence livability, attractiveness, sustainability, and the 

economic competitiveness of a region. 

Secondly, in addition to the survey, existing freight planning and modelling activities at 

the state DOT and MPO level were reviewed. It was found that freight modeling is not as 

advanced as passenger modeling especially at the MPO level and there are very few 

models of commodity flow other than truck movements. Compared to MPOs, state DOTs 

have relatively higher frequencies of freight modeling activities in practice, although 

commodity-based models are still rare.   

Thirdly, challenges in implementing freight demand models were also reviewed. The lack 

of disaggregate freight/truck data availability is one of the largest challenges to effective 

freight model development at the metropolitan or regional level. Potential new data 

sources addressed include intelligent transportation systems (ITS) technologies, a series 

of truck and container trackers implemented by carriers through radio frequency 

identification (RFID), and GPS devices (Bronzini, 2006). Fundamental differences 
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between freight and passenger travel behavior is also a fact to be considered in 

modeling.            

Various modelling methodologies and their advantages and disadvantages were 

reviewed: these include trend and time series analysis, four-step models, truck, tour-

based modelling, micro-simulation models, economic activity models, and supply-chain 

models. Choice of the most appropriate model depends on the area being modeled, 

including the size of the modeling area, the data available, the organizational structure, 

and the economic activity. Tour-based models, which are often referred as trip-chaining 

models, were reviewed with particular interest since the model proposed in this study is 

based on tour-based modeling structure.       

Lastly, GPS data use in freight modeling was examined. The use of GPS-based data 

presents  several opportunities: it provides disaggregate data; it can help to identify 

performance measures; it helps in modeling freight movements with spatial and temporal 

disaggregate details which have been largely neglected in travel demand models; it can 

be an inexpensive way to replace truck survey data collection.    

After the literature review, a tour-based truck demand modeling framework was 

developed, because conventional trip-based models measure travel in terms of 

independent trips between pairs of zones and ignore the relationship between trips that 

may be segments of a tour. Many trucks make multiple stops to deliver goods, and 

therefore modeling tours is more reasonable and important for truck modeling than for 

personal travel modeling. The proposed model was intended to inform a transferrable 

framework for state/regional freight demand models and examine data sharing, 

modeling, and collaborative planning and integration of MPO freight activity in statewide 

freight planning.  
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The framework of the proposed model is composed of several key components. The 

Tour Generation step probability functions create a trip at a certain time and start 

location. Tour Main Destination Choice follows next, and Number of Intermediate Stops 

estimates how many stops if any a given truck makes. Location of Intermediate Stops 

estimates stop locations. Time Period of Tour Start follows the Atlanta Regional 

Commission’s (ARC’s) four time periods. Trip Accumulator breaks tours into individual 

trips for analysis. The Traffic Assignment step assigns truck and passenger traffic to 

roads simultaneously by traffic period.  A series of logit models is applied and Monte 

Carlo simulation is used to identify the tour’s main destination zone, the number of 

intermediate stops, the stop locations, and the time period of the tour’s start.   

The proposed model represents one of only a few truck modelling efforts to date to 

utilize real time GPS truck data. The study uses eight weeks of GPS data from 5,000 

different trucks in calendar year 2011, based on sampling movements for 2 weeks in 

each of four seasons within the Atlanta MPO and Birmingham MPO boundaries.  The 

study proposes improvements to a vehicle trip based freight demand model by utilizing a 

combination of GPS-based truck movement database, detailed employment data, and 

data describing regional transportation networks. 

The research provides planners and decision makers with insights to improve regional 

and statewide freight demand modeling/planning and freight related regional strategies.  

Lessons learned from this research include: (1) Freight modeling remains underutilized 

in most MPOs; (2) Tour-based freight modeling retains a theoretical advantage over trip-

based modeling; (3) Tour-based truck movement models capture underlying freight 

movement relationships more completely than conventional models; (4) GPS-derived 

truck movement data is a viable data source and has the advantage of being cheaper to 

collect than the use of trip diaries. It can be targeted to trucks operating in a specific area, 
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and can collect data for a long period of time; (5) GPS data processing should carefully 

preserve data completeness and representativeness; (6) There is added benefit to 

integrating GPS data with other information on land use, destination characteristics, fleet 

characteristics, congestion levels etc.; (7) GPS data is very promising, but needs further 

improvement with regard to information on vehicle type, better geocoding of external trip 

ends, and a more consistent ping rate. GPS data provides greater positional accuracy 

and the importance of this will likely increase; (8) There is increasing need for tour-based 

and supply-chain models of freight and commercial vehicles activity; (9) New regional, 

national and international scale models of commodity flows/economic activity are 

needed; (10) Activity-based modeling integrates the various choices, considers tours, 

reduces aggregation error and is a better disaggregate input to dynamic traffic 

simulations; (11) Permits a more accurate means of analyzing traffic impacts of projects 

and can address intra-regional commerce or inter-regional goods shipments. 

State and metropolitan transportation planners and engineers, policymakers at all levels 

of government in other state DOTs and MPOs can learn from this study and develop 

their own truck demand model borrowing the framework used. Researchers should also 

work with practitioners to implement tour-based truck models with GPS data in different 

settings to overcome local and regional differences. Researchers should examine the 

range of applications that improved truck modeling can have including impacts on air 

quality models, traffic congestion forecasts, and investment decisions. 
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SECTION I. INTRODUCTION  

Research Background 
 

Federal legislation such as the Intermodal Surface Transportation Efficiency Act 

(ISTEA), the Transportation Equity Act for the 21st Century (TEA-21), the Safe, 

Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users 

(SAFETEA-LU), the Moving Ahead for Progress in the 21st Century Act ("MAP-21"; P.L. 

112-141), and the recent Generating Renewal, Opportunity, and Work with Accelerated 

Mobility, Efficiency, and Rebuilding of Infrastructure and Communities throughout 

America Act (GROW AMERICA) have encouraged inclusion of freight components in the 

statewide and regional transportation planning processes.  

Given the growth in freight transport and its importance to national, state, and regional 

economies, public-sector agencies need improved capabilities to analyze freight 

movement.  A number of MPOs are becoming increasingly interested in developing 

formal freight models to include in transportation planning procedures. 

In general, freight modeling is not widely developed and operationalized at the MPO 

level due to the complexity of freight movement and the lack of availability of detailed 

truck trip data.  Most publicly available truck movement data is reported at the inter-

county level and is represented as aggregated tonnages that need to be broken down 

into smaller geographies for more analysis and modeling. Existing public freight datasets 

are often used as the basis for capturing vehicle trip information. The current Freight 

Analysis Framework (FAF) provides freight data based on the Commodity Flow Survey 

(CFS) conducted every five years with commercial vehicle data collected from state 

DOTs and other proprietary data sources.  The FAF provides aggregate information on 
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commodity shipments between selected major cities and remainders of states, with 

otherwise limited geographic detail on shipment at smaller geographies. Commercial 

commodity flow databases are available (such as Global Insight’s TRANSEARCH data), 

which themselves make use of the FAF or its principal data source.  For example, the 

U.S. Commodity Flow Surveys uses FAF as well as some other data including the 

Annual Survey of Manufacturers (ASM) to establish production levels by state and 

industry; the Surface Transportation Board (STB) Rail Waybill Sample develops all 

market-to-market rail activity by industry; the Army Corps of Engineers Waterborne 

Commerce data develops all market-to-market water activity by industry; the Federal 

Aviation Administration (FAA) develops Enplanement Statistics; Airport-to-airport cargo 

volumes offer additional (e.g. county level) spatial detail, and have been purchased by a 

number of transportation planning agencies. However, for many agencies, such multi-

sourced, commercial datasets represent a significant expense, while their construction is 

not entirely transparent and not readily amenable to in-house agency modification.  

Freight transportation surveys (such as roadside interviews, intercept surveys, mail-back 

surveys, telephone call-in, focus and stakeholder group surveys, and commodity flow 

surveys) are often used to collect data on freight transportation. However, they are quite 

time-consuming and require a great amount of labor and budget to collect reasonable 

data. Also, insufficient capital resources is cited as a barrier to use of ITS technologies. 

GPS-based truck travel data may lower the hurdle posed by the lack of detailed and 

disaggregated truck travel data, so that regional planning organizations can develop 

freight demand models in conjunction with their passenger travel demand forecasting 

models more easily.  Incorporated with other existing data mentioned above, GPS data 

provide detailed Origin-Destination information, critical routes for goods movement, 

operating speed of a large sample of trucks along major highways, travel times, and 
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sample flows for intercity truck traffic along significant truck corridors, etc. (Liao 2010; 

McCormack 2011).  This study explores the possibility of developing a tour-based freight 

demand model at the state/regional level, utilizing recently available nationwide GPS-

based truck travel data, in conjunction with existing data sources, detailed employment 

databases, and regional transport networks. With two case studies of Atlanta and 

Birmingham metropolitan area, this study investigates the current state of the practice 

and constructs a transferrable framework for state/regional freight demand models, 

which many DOTs and MPOs are looking for. The results would shed light on various 

issues such as data sharing, freight modeling, and collaboration of MPO freight planning 

activities within the statewide freight planning framework. 

Report Organization  
 

With GPS-based truck data, this study has developed a tour-based freight demand 

model and applied it to Birmingham and Atlanta metropolitan areas. The report starts 

with a literature review on various freight modeling techniques, their strengths and 

limitations, the challenges of implementing freight modeling, and the merits of employing 

GPS truck data for a tour-based freight demand modeling. The four major sections of the 

report are as follows: 

Section II-Literature Review: This literature review lays the foundation for understanding 

the research background and the importance of this study by a thorough examination of 

the previous literature on 1) the significance of developing freight models; 2) existing 

application of freight planning and modeling; 3) challenges in implementing freight 

demand models at the MPO/State level; 4) the state-of-art of current modeling 

methodology; and 5) the application of GPS-based data in freight modeling. 
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Section III-Tour-Based Freight Demand Model: This section develops a methodological 

framework of a tour-based freight demand model at the MPO level using GPS truck 

data. The section provides an introduction to the architecture of the tour-based model 

and data used, which could serve as a prototype for future MPO level freight (truck) 

demand modeling. The developed framework has been applied to metropolitan areas in 

the southeast (Atlanta, GA; Birmingham, AL). The methodology could be easily applied 

to other metropolitan area with data availability. 

Section IV-Planning Applications: This section shows some examples of potential uses 

of the model with multiple performance measures and also shows possibilities of 

applying the model to corridor analyses, small geographic area analyses, and scenario 

planning. The section introduces some important performance measures to compare the 

results of the two classes of models comprehensively and derives important policy 

implications from the comparison. The results of the tour-based model for six scenarios 

of the Atlanta metropolitan area are presented and compared with the trip-based model 

that is currently being used by ARC.  

Section V- Recommendations: This section summarizes main findings and puts forward 

constructive recommendations for future research.  
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SECTION II. LITERATURE REVIEW  

Significance to MPO Planning  
 

Freight modelling matters because of the tangible effects freight has on urban and rural 

roadways in a framework of federal, state, and local transportation planning and funding 

allocation.  Two entities typically perform transportation modeling: state transportation 

agencies, usually at the statewide level, and metropolitan planning organizations (MPO), 

at the urban level. Their work is part of much larger planning and programming 

processes, which respond to changing economic conditions, legal requirements, and 

political priorities to promote the most appropriate infrastructure investment.  As such, 

the modeling output’s influence on the process and changing conditions make freight 

modeling of particular importance to MPOs and state transportation agencies. 

Growing Freight Traffic 

Cities and states are facing the continuing increase of global trade and concomitant rises 

in domestic freight flows. The U.S. domestic freight volume is projected to increase 65-

70% by 2020 and freight value by 300% in the same period (Lahsene, 2005).  The 

projected increase in freight stresses the importance of performing freight demand 

modeling including truck modeling activities. Also, the growth is projected to occur 

across several modes.  Rail traffic has increased steadily, and the increase is predicted 

to continue, especially as its links with international freight movement continue to 

strengthen (Congressional Budget Office, 2006).  Moreover, the expansion of the 

Panama Canal may shift land-based traffic flows in new directions, modes, or facilities 

(KRCU, 2011).  The great growth in freight traffic will likely also have significant impacts 

on pollution and roadway maintenance (to the extent that trucks accommodate the 

increases) (Transportation Research Board, 2007). 

http://www.cbo.gov/sites/default/files/cbofiles/ftpdocs/70xx/doc7021/01-17-rail.pdf
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Economic Development 

Freight planning has important impacts on regional economic development, mainly 

because freight planning is closely associated with the regional congestion level that has 

influences on the livability, attractiveness, and sustainability of a region, and freight 

planning is often also related to certain types of businesses as it determines the cost and 

mobility of commodities. Some jurisdictions are making efforts to address freight 

planning at a regional or state level.  The Tennessee DOT’s 10-year strategic 

Investments Program recognizes the importance of the integration of passenger and 

freight transportation (TDOT, 2005). The improvement of freight transportation involves 

not only the public sector, but also the communities and freight carriers. One common 

challenge, as encountered recently by the Tennessee DOT, is the accelerating increase 

of truck traffic, especially on rural interstate systems; and the difficulties involved in 

coordinating information with freight carriers to alleviate the growing pressures on the 

highway system (Stewart, 2012).  Moreover, the National Cooperation Freight Research 

Program recognizes the multi-jurisdictional nature of freight planning and economic 

development, notably citing multijurisdictional barriers as a major issue that needs to be 

addressed in freight planning (Stewart, 2012).  

Support for Decision Making 

Freight modeling and forecasting can serve as a basis for private- and public-sector 

decision making for freight infrastructure and other long-term investments. It will have an 

impact on policymakers, whose policies may take many years to reach fruition, and 

major infrastructure operators (e.g., for airports, sea ports, roads, and rails) who need to 

forecast freight growth appropriately to minimize and prepare for the investment risks 

(Lahsene, 2005).   
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Public-sector decision makers need at least eight types of freight analysis: 1) Costs and 

benefits of freight programs and projects, 2) Performance measures specific to freight 

movements, 3) Mode shifts, 4)Time-of-day shifts, 5) Route diversion estimates, 6) 

Freight forecasts, 7) Existing routings of freight vehicles, and 8) Facility flow information 

(Cambridge Systematics, 2010).  Moreover, commodity-based/Input-Output (I-O) 

models, upon which many freight flow models are based, need additional data, including 

“existing and forecasted commodity flow data, traffic counts, employment data, 

characteristics of major freight generators, forecasts of economic activity, and technical 

coefficients to extrapolate existing production and trade patterns into the future” 

(Cambridge Systematics, 2010). 

Freight modeling and forecasting can support public decision making and its links with 

the private sector.  According to the National Cooperative Freight Research Program 

(Cambridge Systematics, 2010) , the two sectors too rarely coordinate  presently.  There 

needs to be more coordination between the private sector which is more directly 

managing the nation’s freight flow, and the public sector, which makes decisions and 

policies affecting freight infrastructure (Cambridge Systematics, 2010). 

Federal Laws and Regulations 

Federal law requires state DOTs and metropolitan planning organizations (MPOs) to 

account for freight in “long-range plans, transportation improvement programs, and 

annual work elements,” though many MPOs and DOTs have faced limitations including a 

lack of data and highly complex models that have made freight planning difficult 

(Beagan, Fischer, & Kuppam, 2007; Federal Highway Administration, 2007).   

On July 6, 2012, President Barack Obama signed  Public Law 112–141, the Moving 

Ahead for Progress in the 21st Century Act (Moving Ahead for Progress in the 21st 

Century, n.d.). Section 1116 of MAP–21 (Prioritization of Projects to Improve Freight 
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Movement) authorizes the Secretary to increase the Federal share payable for any 

project to 95 percent for projects on the Interstate System and 90 percent for any other 

project if the Secretary certifies that the project Demonstrates the improvement made by 

the project to the efficient movement of freight (including making progress on freight 

performance measures established under MAP–21) and is identified in a State Freight 

Plan developed pursuant to section 1118. 

Section 1117 of MAP–21 (State Freight Advisory Committees) directs the Secretary to 

encourage each state to establish a State Freight Advisory Committee consisting of a 

representative cross-section of public and private freight stakeholders.  

Section 1118 of MAP–21 (State Freight Plans) directs the Secretary of Transportation to 

encourage states to develop a comprehensive State Freight Plan that outlines both 

immediate and long-term freight planning activities and freight-related transportation 

investments. Section 1118 specifies certain minimum contents for State Freight Plans, 

and states that such a plan may be developed separate from or be incorporated into the 

statewide strategic long-range transportation plan required by section 135 of title 23, 

United States Code. 

MAP-21 also provides for travel demand forecasting relating to federal funding.  For 

example, it requires that “each State…develop a long-range statewide transportation 

plan, with a minimum 20-year forecast period for all areas of the State” and the 

“Establishment of a National Freight Network” (Moving Ahead for Progress in the 21st 

Century, n.d.).  Linkages between funding and requirements for freight forecasting 

highlight the need for effective and approachable forecasting methods.  
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Unique Characteristics of Freight Modeling 

While it is not uncommon to scale up projected passenger travel demand to account for 

freight demand at a very basic level, freight modeling is best addressed separately since 

many of its fundamental dynamics differ from those that drive passenger travel.  Freight 

and passenger travel demand forecasting may benefit from different modeling and 

forecasting techniques because of the ways in which they differ, regarding several 

fundamental characteristics as follows (Cambridge Systematics, 1997; Eatough, Brich, & 

Demetsky, 1998; Wigan & Southworth, 2005). 

 Decision Making Processes: Freight flows and passenger travel result from 

very different decision making dynamics.  First, passenger travel typically results 

from the aggregation of many individuals’ own choices and travel behavior.  By 

contrast, freight movement results from the decision of a number of entities who 

decide a segment of the movement, such as agents, shippers, carriers, brokers, 

and receivers (Cambridge Systematics, 1997; Eatough et al., 1998) – hence it 

usually has more decision makers involved per trip.  Moreover, the value of time 

influences decisions.  Eatough et al. (1998) explain that freight demonstrates a 

wider variety of time value based on commodity type, perishability, and value 

than do passengers. 

 Physical Facilities: The physical facilities required for freight and passenger 

transportation include both the vehicle types and the load/unloading facilities.  

Normally, only freight requires extensive loading and unloading facilities 

(Cambridge Systematics, 1997; Eatough et al., 1998). 

 Unit of Measure: Passenger travel is normally measured by number of vehicles, 

whereas freight might be measured either by number of vehicles or commodity 

characteristics, such as volume, value, or weight (Cambridge Systematics, 1997; 

Eatough et al., 1998). 

Existing Freight Planning and Modeling 
 

2013 DOT/MPO Survey: Use of Freight Models and GPS Data 

The research for this study includes a short survey that addresses the state of the 

practice in freight studies and modeling activities in regional and state transportation 

agencies around the country.  The online survey questions included prevalence of 

models and studies, model characteristics, usage of Global Positioning System (GPS) 
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data, challenges in modeling freight, and consideration of future improvements.   The 

survey was delivered to 50 state Department of Transportation (DOTs) and 381 

Metropolitan Planning Organizations (MPOs).  Out of the targeted agencies, 44% of 

DOTs (22 agencies) and 39.4% of MPOs (150 agencies) responded (Figure 1: Survey 

Respondents). 

 

Figure 1: Survey Respondents 

The survey explicitly distinguished freight modeling from freight studies and definitions 

were provided to survey respondents prior to questions being completed. Freight studies 

were defined as an analysis of freight data that may include such elements as an 

inventory of freight generators or consumers, descriptions of the freight network and 
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current freight movement data. Freight modeling was defined as an operational 

representation of the freight network that can simulate vehicle movements or commodity 

flows separately from passenger movements. Freight models can be used to forecast 

either freight vehicle or commodity movements.  Most of DOTs (95%) and majority of 

MPOs (63%) conduct freight studies, while much smaller numbers of these two groups 

(55% in DOTs; 28% in MPOs) utilize freight models.  Developing freight performance 

measures is not yet a common activity. Only one third (32% in DOTs and 29% in MPOs) 

reported that they use freight performance measures (Table 1). 

Table 1: DOT’s and MPO’s freight study/model/performance measure (Source: CQGRD) 

 
Freight Study Freight Model Performance Measures 

  Yes No Yes No Yes No 

DOT 21 (95%) 1 (5%) 12 (55%) 9 (41%) 7 (32%) 12 (55%) 

MPO 91 (63%) 50 (35%) 42 (28%) 104 (70%) 42 (29%) 92 (64%) 

 

It is observed that freight demand is often forecast via the use of models.  Agencies that 

answered the question, “How do you forecast freight demand?” also reported that their 

agencies operate freight models. Combining in-house models and contractor-built 

models, 85% of the DOT respondents and 73% of the MPO respondents utilize freight 

models to forecast freight demand.  Vehicle-based modelling (31% of the DOT 

respondents and 48% of the MPO respondents) is still more common than commodity-

based modelling (23% of the DOT respondents and 17% of the MPO respondents).   

Many DOTs (46% of the DOT respondents) are trying to develop hybrid models 

combining vehicle-based and commodity-based components (Table 2).  
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Table 2: DOT’s and MPO’s freight model characteristics (Source: CQGRD) 

Forecasting 
Method 

DOT 

In-house model 4 (31%) 

Contractor-built model 7 (54%) 

Trend extrapolation 1 (8%) 

Other 1 (8%) 

MPO 

In-house model 14 (32%) 

Contractor-built model 18 (41%) 

Trend extrapolation 1 (2%) 

Other 11 (25%) 

Freight model 
last updated 

DOT 

Within the last year 6 (46%) 

Between 1 and 2 years ago 3 (23%) 

Between 2 and 5 years ago 2 (15%) 

Between 5 and 10 years ago 1 (8%) 

More than 10 years ago 1 (8%) 

MPO 

Within the last year 10 (23%) 

Between 1 and 2 years ago 15 (35%) 

Between 2 and 5 years ago 9 (21%) 

Between 5 and 10 years ago 7 (16%) 

More than 10 years ago 2 (5%) 

Modelling 
method 

DOT 

Vehicle-based 4 (31%) 

Commodity-based 3 (23%) 

Hybrid 6 (46%) 

Other 0 (0%) 

MPO 

Vehicle-based 20 (48%) 

Commodity-based 7 (17%) 

Hybrid 8 (19%) 

Other 7 (17%) 

 

The survey results also reveal current truck movement data sources (Table 3). Publicly 

available data developed by state or federal government such as the Freight Analysis 

Framework 3 (FAF3) is still the prevailing data source (36% of DOT respondents and 

34% of MPO respondents). Other sources such as shipper surveys, route specific 

observations, local data, and private data sources are also often used for vehicle truck 

modelling activities, while GPS-based data use is limited.  Only 2 DOTs and 7 MPOs 

reported that they have used GPS data in their freight modelling work.  As for the data 
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source for commodity-based models, Transearch is reported as the dominant source, 

and there was no case reported involving GPS data.  One DOT and five MPOs had used 

GPS data in a freight model. This DOT and two MPOs said that they obtained the GPS 

data from the American Transportation Research Institute (ATRI). 
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Table 3: DOT’s and MPO’s data source (Source: CQGRD) 

  DOT MPO 
V

e
h

ic
le

-b
a
s

e
d

 m
o

d
e
l 

Data 

Sources 

  

GPS 

data 

usage 

  

C
o

m
m

o
d

it
y

-b
a
s
e
d

 m
o

d
e

l 

Data 

Sources 

  

GPS 

data 

usage 

  

 



15 
 

Many of the primary obstacles in modelling freight were well understood:  insufficient 

funding, insufficient staffing, too many competing tasks, lack of specialized knowledge 

within the organization, unavailable data, and limited data collection technology.  

Overall, the survey results indicate very limited use of GPS-based data and many 

perceived obstacles to its use within freight models. There was also great deal of interest 

in new and easier to obtain data sources.  

Freight-Related Studies 

Hunt & Stefan (2007) developed a disaggregate micro simulation freight model for 

Calgary, Canada. The model uses a tour-based approach to simulate the multistep 

nature of commercial vehicle movements. The model captures commercial vehicles as 

part of a larger regional travel model with three components: commercial vehicle model, 

person-travel model, and joint vehicle assignment (Kuzmyak, 2008).  As Kuzmyak 

(2008) describes, the Calgary commercial vehicle model (CVM) has seven steps: 

1. Tour generation:  The tour generation model used survey data to establish tour 

generation rates for each employee for each of five industrial activities. 

2. Tour purpose and vehicle allocation:  The tour purpose and vehicle allocation 

step assigns a vehicle type and trip purpose to each tour through a Monte Carlo 

process. 

3. Tour start time:  A Monte Carlo process assigns each tour a tour start time based 

on survey data by activity and time period. 

4. Next stop purpose:  A Monte Carlo process assigns each tour to either continue 

to another stop or return to origin after each stop.  This step chains trips together 

into tours. 

5. Next stop location:  If the last step has extended the trip, the next stop location 

step assigns a new destination based on the probability of the next stop being in 

any of the model zones (1,447 model zones).   Factors considered in the 

probability include the next stop’s possible land use type, accessibility to 

population categories, accessibility to employment categories, relative 

attractiveness, and “enclosed angle,” which distinguishes among destinations 

heading away from or towards the tour origin. 

6. Stop duration:  A Monte Carlo process assigns stop duration based on 

observations. 
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7. Calibration:  Results are calibrated to match observed targets in order of 

decreasing importance: (a) tour generation by industry and geographic area, (b) 

tours starting in various times of day, (c) vehicle type and tour purpose, (d) 

number of stops per tour, (e) total trip destinations in each geographic area by 

vehicle type, (f) intra-zonal proportions of trips by vehicle types, (g) total trips by 

vehicle type and industry 

The Calgary model used a commercial vehicle survey with interviews from 3,100 

business and 64,000 commercial vehicle trips (Kuzmyak, 2008).  According to Hunt & 

Stefan (2007), among the model’s strengths are its sensitivity to numerous factors, some 

of which are influenced by policy, including road capacity and connectivity; “truck route 

policy; road tolls; fuel taxes; household travel; population level and spatial distribution; 

and employment level, composition, and spatial distribution.” 

Basic Steps 

Eatough et al. (1998) identify six steps of the freight transportation planning process, 

depicted in Figure 2 below.  Freight modeling may be involved in several steps. Step 1 

(“Inventory System”) may include building a model of the freight transportation network, 

collecting data on current freight movements, and assessing their distribution and 

functions in the model.  Step 2 (“Identify Problem”) could conceivably address both 

existing problems foreseen in the model or made known through other data sources, and 

future problems revealed through freight demand projection.  The demand projection can 

reveal transportation network inadequacies that reveal future problems (Eatough et al., 

1998). 
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Figure 2: Steps in Freight Planning Process 

(Source: Eatough et al., 1998) 

Freight planning may take on different forms.  Guo & Wittwer (2009) describe five 

different types of plans by increasing level of complexity. Each type of plan incorporates 

all the components of the less complex plan types, while adding additional elements.  

The following are plan types in order of increasing complexity. 

 Descriptive:  Descriptive plans inventory freight generators and estimate freight 

flows. 

 System: In addition to descriptive steps, system plans examine freight traffic’s 

effect on the roadway system to identify gaps and propose solutions. 

 Integrated: In addition to system elements, integrated plans examine freight 

movements in tandem with other types of movement (e.g., passenger movement) 

and also possibly larger geographies (e.g., state-level). 

 Strategic: In addition to integrated steps, strategic plans consider broader “policy 

and regulatory issues.” 

 Business: In addition to strategic steps, business plans set forth the steps to 

achieve strategic goals.  They detail tasks, assign responsibility, and plan for 

reporting and sustaining progress (Guo & Wittwer, 2009). 



18 
 

Metropolitan Planning Organizations 

Several surveys have assessed MPO’s performing and the sophistication of freight 

planning at the regional scale.  Vanasse Hangen Brustlin, Inc. (VHB,2006) solicited 

information from MPOs about their travel demand modeling methods through a web-

based survey on behalf of the Transportation Research Board Committee B0090 

(Committee for Determination of the State of the Practice in Metropolitan Area Travel 

Forecasting).  The survey was sent to 381 MPOs and received 228 responses from 

MPOs in metropolitan areas of all sizes.   

In-depth interviews with 16 MPOs supplemented the survey.  VHB (2006) found that 

freight modeling is not as advanced as passenger modeling, partially because MPOs 

often do not have good data about truck movements.  Almost 80% of large MPOs and 

about half of other MPOs model truck trips, though very few model commodity flows.  

MPOs are reluctant to shift to a full commodity-based framework for several reasons. 

One of the major reasons is that data needed for commodity flow models are not readily 

available, which is often at a high level of aggregation or needs to be purchased from 

private sources (Kuzmyak, 2008).  Most MPOs that model trucks use the traditional four-

step approach.  The survey also showed that most small MPOs (populations under 

200,000) with passenger or freight travel demand models rely “on the state 

transportation agency or consultants for model development and application” 

(Transportation Research Board, 2007; VHB, 2006).  Large MPOs typically reported 

annual forecasting budgets below $1 million (VHB, 2006). 

Seventy-five percent of models in use originated within 10 years of the report.  Several 

interviewed MPOs mentioned lack of data as an obstacle, and the interviews suggest 

that more MPOs might perform truck modeling if needed data were more readily 

available.  Finally, some MPOs were considering adopting activity- or tour-based models 
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(20% of small and medium MPOs and 40% of large MPOs) (Transportation Research 

Board, 2007; VHB, 2006). 

MPOs had several data sources.  Many used TRANSEARCH, a commercial database 

including origin-destination pairs, commodities, and modes (IHS Global Insights, n.d.; 

VHB, 2006).  For commodity flow-based models, the primary databases were the Freight 

Analysis Framework, Commodity Flow Survey, TRANSEARCH Database, Vehicle 

Inventory and Use Survey (VIUS), and Vehicle Travel Information System (VTRIS) 

(Kuzmyak, 2008; VHB, 2006).  Some MPOs supplemented TRANSEARCH with 

independently collected local data (Kuzmyak, 2008; VHB, 2006).   

Kuzmyak (2008) found that most MPOs do model truck movements, but that very few 

model other modes or underlying commodity flows.  He suggests three reasons for this.  

First, MPOs are adapting passenger travel demand models, with which they are more 

familiar, to freight movement purposes.  The four-step passenger travel demand model 

accounts for vehicle movements.  Second, truck data is easier to obtain at low 

geographic scales than commodity movement data.  Finally, trucks visibly and tangibly 

affect mobility.   

Blonn, et al. (2007) reported a 2007 survey of small MPOs in Midwestern states.   

Researchers sent surveys to 56 MPOs in the states of Kansas, Missouri, Iowa, 

Minnesota, Wisconsin, Illinois, Kentucky, Indiana, Ohio, and Michigan.  All MPOs were in 

cities with populations between 50,000 and 200,000 people.  They received 19 valid 

responses for a response rate of 34%.  Sixteen of the 19 respondents indicated 

addressing freight in their long-range plan; considering the following modes: rail (x 15), 

trucks (x 14), aviation (x 9), waterways (x 9).  Blonn et al. (2007) also found that eight of 

the 19 respondents do not have a freight plan.  Seven of the 9 that did have freight plans 
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developed the plan in order to fulfill federal requirements.  The majority of the MPOs that 

did have a specific freight plan reported that it was “primarily an inventory of freight-

related facilities and generators” (Blonn et al., 2007).  Table 4 lists the freight-related 

issues addressed by these Midwestern MPOs, with varying levels of attention given to 

them in their long-range plans. Numbers in the table are out of 11 MPOs surveyed that 

planned for freight. 

Table 4: Level of Attention Given to Freight-Related Issues 

  Congestion Air Quality Safety Intermodal 

Level Count % Count % Count % Count % 

None 4 36% 9 82% 2 18% 3 27% 

Very little 2 18% 6 55% 3 27% 3 27% 

Somewhat 11 100% 3 27% 10 91% 8 73% 

A lot 0 0% 0 0% 2 18% 3 27% 

Source: Blonn et al. (2007) 

 

Of the 11 respondents who reported using freight data, five use state sources, two use 

regional sources, two used surveys, one uses local sources, and one uses federal 

sources.  Commodity flow and traffic counts are the most common data elements used. 

 

State Departments of Transportation 

 

Several decades ago, very few states systematically planned for freight.  In the early 

1990s, only 4 state DOTs answered a 1993 Cambridge Systematics survey on plans for 

developing a statewide freight plan by saying that they did plan on developing one 

(Eatough et al., 1998).  California, New Jersey, and Florida already included freight 

transportation plans as part of their overall transportation plans, with the Intermodal 
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Surface Transportation Efficiency Act (ISTEA) of 1991 as the impetus to create the 

requirement for statewide freight transportation planning (Eatough et al., 1998).   

Horowitz (2006) explains in NCHRP Synthesis 358 that statewide models may overlap 

with MPO passenger or freight models, and that they project travel demand for areas not 

covered by the MPO model.  States may need statewide freight models because a larger 

percentage of rural than urban traffic is caused by freight movements.  He found a 

significant increase in freight modeling activity at the statewide level, with nineteen 

states having operational statewide models that modeled passenger and/or freight 

traffic.  Three of these states had dormant statewide models, 5 were developing 

statewide models, 3 were revising them, and 1 had a partial model.  Horowitz (2006) 

also reported that 16 of the 49 states who responded to the survey modeled freight in 

their statewide models, and that 12 of these 16 used commodity-based models, despite 

the large data requirements of such models.  Just over half of freight models utilized 

data obtained from TRANSEARCH, three used the Commodity Flow Survey, and one 

performed its own shipper and carrier survey.   Commodity-to-truck conversions were 

addressed with the following data sources: the VIUS (trucks only, x6), commercial freight 

data vendor (x4), rail carload waybill sample (rail only, x3), conversion factors from 

another state or an MPO (x2), and truck intercept surveys (x1).  Trucks were the most 

frequently addressed mode (x15), followed by rail (x5), air freight (x5), salt water 

shipping (x4), fresh water shipping (x3), and less-than-truckloads/truckload movements 

(x1).  Air pollution modeling was the most common form of post-processing (x9).  Seven 

states also derived level of service performance measures, three performed cost-benefit 

analyses, and two derived economic impacts (Horowitz, 2006). 
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Operational Freight Demand Models (FDMs) in MPOs/DOTs 

Horowitz (2006) describes the Virginia Statewide Model.  It was developed in 2005 by 

Wilbur Smith and Associates.  It includes a passenger model and a commodity-based 

freight model that accounts for trucks movement (Virginia Department of Transportation, 

2012).  Its data is primarily from TRANSEARCH supplemented by ground-based truck 

counts.  Productions change proportionally with forecasted employment, and 

consumption changes proportionally to employment and population.  There are no 

special generators (Horowitz, 2006).  

The Maryland Department of Transportation was the first state in the nation to issue a 

statewide freight plan (Cambridge Systematics, 2009). Mainly built on the commodity 

flow data of TRANSEARCH by IHS Global Insight, the plan forecasts out to 2035. The 

forecasts (p. 30) conclude that both the Interstates and non-Interstates corridors will 

continue to experience increases in truck transportation. The assumed average growth 

rate of the economy is set between 2 and 3 percent. The Maryland Freight Plan also 

recognizes that the conditions of the trucking and highway systems in Maryland have 

implications for economic and transportation development far beyond its own boundary 

(Cambridge Systematics, 2009).  

Shen (2005) described Florida’s statewide freight demand model as it existed at the 

time.  The model was coupled with its passenger travel demand model.  Both models 

operated on a traditional four-step process, where each performed trip generation, trip 

distribution, and mode split separately before jointly assigning traffic to the road network.  

While it also accounted for non-freight commercial vehicles with a truck-based approach, 

it generated and distributed freight trucks through a commodity-based model with 14 

commodity groups. Shen (2005) said that the lack of disaggregate data and accounting 

for international trade over the entire state were two of the main challenges. 
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Figure 3: Florida’s statewide model structure 

(Source: Shen (2005)) 

Florida is replacing its original freight demand model with an agent-based supply chain 

model (Mysore, 2013; Resource Systems Group, Inc., n.d.; Smith & Shabani, 2013).  

The model synthesizes firms based on county business pattern data that generate 

supply and demand for goods to and from specific locations.  The firms are aggregated 

at the travel analysis zone (TAZ) level.  The model incorporates supply chain 

considerations such as inventory costs in addition to supply chain costs.  The Florida 

model requires data on freight flows, employment, distribution centers, industry-specific 

economics, multimodal road networks, and costs.  Figure 4 shows the data (blue), steps 

(green), and outputs (red) for the Florida freight model. 
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Figure 4: Florida Supply Chain Freight Model 

(Source: Mysore, 2013) 

Oregon’s first generation Statewide (SWIM1) Integrated Model encompasses economic, 

land use, and travel demand models, as depicted in Figure 5 below (Hunt & Gregor, 

2008).  Generation 1 uses a commodity-based model that calculates freight movement 

as monetary flows, which it converts to tonnage and finally to trucks through fixed ratios 

by commodity type for both conversions.  Mode split and route assignment employ a 

logit model.  SWIM1 forecasts in five-year increments, where the outputs from one step 

provide inputs for the next five-year step (Hunt & Gregor, 2008).  Oregon finalized a new 

statewide model (SWIM2) in 2009, which it used to inform its state plan under three 
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different economic scenarios.  SWIM2 uses a fundamentally similar process to SWIM1 

(Knudson, Hunt, Weidner, Bettinard, & Wardell, 2011). 

 

Figure 5: Oregon Statewide Integrated Model 

(Source: Hunt & Gregor, 2008) 

The California Department of Transportation is developing a California Statewide Freight 

Forecasting Model (CSFFM). CSFFM is a commodity-based trip model that contains the 

following six modules (CA DOT, 2013): 

 Commodity Module: This module generates production/consumption and 

distribution based on demo-economic data and impedance information and 

estimates import/export freight on gateways in CA; 

 Mode Split Module: This module determines mode-share for each mode in each 

OD pair, aggregates mode split model estimated using FAF mode data, and uses 

incremental logit models to evaluate impacts of mode attribute changes; 

 Transshipment Module: This module derives commodity OD flows by different 

transportation modes; 
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 Data Flow of Transshipments Module: This module decomposes inter-modal trips 

into truck/rail/air segments and determines which transport logistic nodes are 

used for each freight movement; 

 Seasonality and Payload Factor Module: This module applies the seasonality 

and payload factors to the model; 

 Network Module: This module assigns truck volumes to the truck road network, 

assigns the corresponding tonnage of commodities to the rail network, and 

validate the results with ATRI’s GPS data. 

 
The CSFFM is a four-step trip-based model fundamentally and the trip generation and 

OD flows is built on estimating the demand for commodities and the corresponding 

commodity flows. It employs the GPS data mainly to validate the model results (CA 

DOT, 2013).  

The Chicago Metropolitan Agency for Planning (CMAP), the University of Illinois at 

Chicago, and Resource Systems Group Inc. (RSG) created an advanced freight model 

that integrates two sub models.  The first (called the “meso-scale model”) simulates 

freight flows between the Chicago metro area and the rest of the United States based on 

the Freight Analysis Frameworks Version 3 products.  The second model (“micro scale 

model”) simulates truck movements from a tour-based approach in metropolitan 

Chicago.  The agency is also working to develop a third sub model to supplement the 

meso-scale model and forecast freight flows independently of FAF3 based on national 

economic inputs (Chicago Metropolitan Agency for Planning, n.d.; Gliebe, Smith, & 

Shabani, 2013; Outwater et al., 2013a; Wies, 2012). 

The meso-scale model integrates logistics components.  The model accounts for truck 

tours and captures industry-specific economic dynamics.  The meso-scale model 
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involves several steps that are similar to those in the Florida state freight model, which 

involves firm-level simulation of supply chain processes that are then aggregated to 

produce model outputs.  All of the steps below are national in scale except for the truck 

touring model, which is regional.  Therefore, the logistics model responds to national 

scale economic changes, while the tour-based model responds to regional and local 

transportation changes (Gliebe et al., 2013; Outwater et al., 2013a). 

 Firm synthesis: Firm synthesis generates businesses in metropolitan Chicago 

as well as internal and external stations.  The step generates firms in different 

industrial sectors and size categories. 

 Supplier selection: Supplier selection pairs suppliers and buyers by linking 

commodities produced by suppliers with specific suppliers requiring the 

commodities.  Many buyers and suppliers are very near each other (i.e., fewer 

than 100 miles), but some are also over 2,000 miles apart. 

 Goods demand: Goods demand distributes commodities from suppliers to 

buyers.  The model generates demand for each consuming firm based on 

average consumption per employee and the firm size. 

 Distribution channels: Distribution channel selects how commodities will travel 

from suppliers to buyers.  The step selects between direct shipment methods and 

intermediate methods that pass through intermodal channels or distribution 

centers.  The step employs a multinomial logit model that assigns either direct 

shipment, or 1, 2, or 3 stops to the shipment.  Model variables are firm size, 

supplier industry, buyer industry, and distance. 

 Shipment size: Shipment size scales commodity movements between suppliers 

and buyers to be annual.  The step uses a multinomial logit model that assigns 
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weights of either less than 1,000 lbs., between 1,000 and 10,000 lbs., and more 

than 10,000 lbs.  The majority of shipments are in the smallest category. 

 Mode and path choice: Mode and transfers assigns a mode to each trip leg 

from supplier to buyer based on the shipment’s total logistics cost.  The total 

logistics cost includes costs for ordering, transportation, handling, damage risk, 

and inventory in-transit, as well as carrying cost and safety stock cost.   The step 

then converts annual shipments back to daily shipments and assigns incoming 

freight to the buyer’s warehouse location. 

The propose meso-scale extension will allow CMAP to forecast future freight flows 

independently of FAF3 by incorporating macro-scale economic dynamics into a freight 

forecast sub model.  This will allow the agency to produce different forecasts for different 

levels of foreign trade, petroleum prices, as well as infrastructure construction and 

changes in supply chain practice.    The extension would be located between the firm 

synthesis step and the goods demand step, replacing the supplier selection with an 

agent-based pairing of buyers and suppliers (Chicago Metropolitan Agency for Planning, 

n.d.).  Figure 6 below illustrates the extension’s steps. 
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Figure 6: Components of Proposed Model Extension 

(Source: Chicago Metropolitan Agency for Planning (n.d.)) 

The logistics model feeds into a tour-based truck model.  The tour-based model is the 

regional-scale component of the freight model.  It simulates tour-based truck movements 

in the Chicago metro area through a methodology that will be detailed below.  The tour-

based model has four components (Outwater et al., 2013a)— 

 Vehicle and tour-pattern choice: This sub model is a joint multinomial logit 

model that simultaneously estimates whether or not a delivery will include stops 
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and the vehicle size.  Joint determination accounts for the fact that vehicle 

selection and tour composition are mutually dependent. 

 Number of tours and stop choice: This sub model accounts for trucks that 

return to home base between tours.  A multinomial logit model predicts whether a 

truck will return to home base after a stop to complete the tour.  Next, 

hierarchical clustering selects stops based on proximity that can be reached in a 

single tour. 

 Stop sequence and duration: This sub model orders stops into a reasonable 

delivery order.  Next, the model predicts stop duration based on commodities and 

shipment size. 

 Delivery time of day: This sub model uses a multinomial logit model to predict 

tour start time.  Trip times of day feed into the route assignment module. 

 

In Canada, Ferguson et al. (2012) applied the framework in the Calgary commercial 

vehicle model (Hunt & Stefan, 2007) to the Greater Toronto and Hamilton area (GTHA) 

in Ontario, Canada.  Tour-based trips are one of the three commercial vehicle flows that 

they addressed.  They obtained data from three sources.  Company level data for 

185,790 establishments came from InfoCanada.  Data included establishment address, 

the number of employees, and the Standard Industrial Classification to designate the 

industry sector.  A survey of 597 firms in Peel County, Ontario provided establishment-

level trip and tour generation data.  The Ministry of Transportation of Ontario 

Commercial Vehicle Survey and hourly count data from the Data Management Group 

supplemented observed movement data.  The model follows the same steps as the 

Calgary commercial vehicle model (Hunt & Stefan, 2007).  Trip generation rates were 

based on industrial sector and number of employees.  While trip generation rates were 
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not validated with manual observations, traffic flows were validated and deemed 

reasonable (Ferguson, Maoh, Ryan, Kanaroglou, & Rashidi, 2012). 

Other Regional Travel Demand Modeling (TDM) Activities with Freight 
components in the South-Eastern United States 

The Southwest Georgia Interstate Study (2010) has incorporated a section for truck trip 

table development, which estimates truck trips independently from passenger trips in the 

travel demand modeling process (PBSJ, et al., 2009). The development of the truck trip 

table is built on FAF2 dataset and is consisted of the three following steps (PBSJ, et al., 

2009): 

 Construction of the commodity OD flows for 67 Georgia Freight Analysis (GFA) 

zones: The commodity flows across 138 FAF regions were extracted by 

transportation mode and by SCTG commodity type and are aggregated into the 

67 GFA zones; 

 Conversion from tonnage of commodities to truck volumes: This step aggregated 

the 43 types of commodities by the SCTG code into 12 types of commodities and 

converted the tonnage of each of the 12 types of commodities into number of 

trucks; 

 Disaggregation of truck trips across 67 GFA zones into 1569 TAZs: This step 

employs socioeconomic data to estimate the shares of the truck volumes by the 

1569 TAZs in southwestern Georgia, so that the truck OD flows between the 67 

GFA zones were disaggregated into the TAZs and can be assigned to the 

transportation network.  

This truck trip table development component is mainly based on commodity flows, which 

is built on the FAF dataset, and converted commodity flows to truck trips using 

conversion table between tonnage and trucks by different commodities. This method is 
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more applicable at the regional level when it is used to estimate the total truck flows into 

or out of the region, but is not very accurate when the truck flows were broken down to 

the TAZ level. 

The Chattanooga Regional Planning Agency (RPA) developed a travel demand model 

with freight components in 2008 and 2009.  Cambridge Systematics headed model 

development and validation while RPA gathered the necessary socioeconomic data.  

The TRANSCAD-based model used 2007 as a base year and forecasted travel demand 

as far as 2035 for that year’s long range transportation plan (Regional Planning 

Association & Cambridge Systematics, 2010). 

The model is a traditional four-step model consisting of trip generation, trip distribution, 

mode split, and route assignment.  It covers all or part of four counties in Georgia (parts 

of two counties and one complete county) and Tennessee (one complete county).  It has 

590 internal travel analysis zones (TAZ) and 38 external TAZs (Regional Planning 

Association & Cambridge Systematics, 2010). 

The trip generation component generated passenger trips and commercial vehicles in 

three categories: light-, medium-, and heavy-duty trucks.  Socioeconomic data informing 

trip generation included various forms of household data, employment data, school 

enrollment, and hotel-motel units.  Trip distribution employed a gravity model.  Mode split 

considered automobiles and transit for passenger, but was omitted for freight as trip 

generation only accounted for trucks.  Vehicle counts validated route assignment.  

However, among the improvements planned for the 2014 model are to validate truck 

trips separately from passenger trips (Regional Planning Association & Cambridge 

Systematics, 2010). 
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The Memphis Area MPO developed the Memphis Travel Demand Model in 2007 in 

association with Kimley-Horn and Associates, Cambridge Systematics, and HNTB.  

Originally conceived with a horizon year of 2030, the current model under development 

has a horizon year of 2040 for that year’s long-range transportation plan.  The 

TransCAD-based model follows the traditional four-step approach for modeling private 

cars (Memphis Area MPO, n.d.). 

The Memphis Travel Demand Model models three classes of commercial vehicles: light 

trucks (“four-tire trucks”), medium trucks (“single unit trucks”), and heavy trucks 

(“combination trucks”).   The truck components follow a three-step model that omits 

mode split since trucks are the only mode considered.  The trip generation step 

generates light, medium, and heavy trucks according to employment by economic 

sector.  Trip distribution uses a gravity model to match trip generations and trip 

attractions.  Route Assignment matches trips with routes concurrently with automobiles 

through a “multi-class highway assignment procedure” (Memphis Area MPO, n.d.). 

 

Challenges in implementing MPOs/DOTs Freight Demand 
Modelling (FDM) 
 

Turnquist (2006) addresses four important characteristics that should be considered for 

effective modeling: First, an effective model should produce  useful outputs and allows 

users to know how to use; second,  an effective model should involve significant 

variables and represent interactions among those variables; third, an effective model 

should operate in a way that is verifiable and understandable; and fourth, an effective 

model should use data that can be obtained, calibrated, and tested.  In this section, 
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challenges in implementing freight demand modeling at MPO and DOT level are 

reviewed. 

Limited Available Data 

Models typically require complex data that is not available from a single source 

(Pendyala, Shankar, & McCullough, 2000).  For example, traditional four-step models 

might require demographic and socio-economic characteristics for its trip generation 

step, freight origin-destination tables for its following steps, and a series of data on 

delays, costs, fleet constraints, and labor constraints to calculate impedance.  Lindsey 

(2008) finds that the limited availability of data is one of the large challenges to effective 

freight modeling that metropolitan planning organizations face.  Likewise, the 

Transportation Research Board (2007) determined the lack of truck data within and 

beyond MPO boundaries to be a major obstacle in MPO freight modeling.  Generally, 

meager data are available for modeling because most of the data needed for freight 

modeling are proprietary information of individual companies who are hesitant to 

relinquish it for fear of competitive disadvantage.  Furthermore, private companies are 

reticent to provide data when the activity removes staff from other revenue-generating 

tasks (Gray, 2005).  Data limitations have furthermore constrained the model types 

available, with the primary models in use being time-series forecasts, and aggregate and 

disaggregate flow models.  Limited geographic specificity in commodity flows has also 

been a challenge in developing commodity-based models (Spear, 2005).  To advance, 

Lindsey (2008) suggests regional-level data collection and standardizing data format. 

Figliozzi, et al. (2007) found  that few transportation planners in major developing 

countries use “analytical urban truck tour models” largely because disaggregate truck 

data is rarely available to planners” (Ambrosini & Routhier, 2004; Figliozzi et al., 2007).  

When disaggregate truck data is available, it is possible to use the disaggregate data to 
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analyze freight movement, revealing the relationship between trip length and empty trips, 

trip speed, and movement (Figliozzi et al., 2007).  Potential new data sources include 

technologies grouped under the heading of intelligent transportation systems (ITS) and a 

series of truck and containers trackers implemented by carriers through radio frequency 

identification (RFID) and GPS devices (Bronzini, 2006). 

Feedback between Freight and Passenger Demand 

Freight demand and passenger demand both affect each other in a cycle, where road 

capacity or congestion caused by both sectors causes these same sectors to adapt their 

behavior accordingly.  For instance, if passenger travel is low on a given road relative to 

capacity, freight might increasingly use the route instead of other more congested 

routes.  Regan & Garrido (2001) reviewed several different freight models, finding that 

most do not sufficiently explain the interrelation between freight and passenger travel 

demand, which is particularly important in urban environments, with effects of either 

demand feeding to decision makers on both sides.  For example, air travel has heavy 

interactions between freight and travel demand, with the supply of both services linked.  

Moreover, models should better consider not just the shipper and the carrier, but also 

the intervening actors, such as freight forwarders, brokers, agents, and facilitators 

(Regan & Garrido, 2001).   

Fundamentally Different Characteristics for Freight and Passenger Travel 

Freight models encounter several challenges as a group.  Most freight models are 

derived from passenger demand models.  Therefore, as a group they assume that 

freight and passenger movement respond similarly (Holguin-Veras & Thorson, 2000).  

Regan & Garrido (2001) reported that few freight models had addressed the means by 

which decision makers in the freight transportation system made their choices.  Instead, 

freight models focused on the number of trucks moving, not on the decision making 
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behind the truck movements.  Regan & Garrido (2001) recognized that freight decisions 

are made not only by shippers and carriers, but also by third party logistics, and the 

choice between private and commercial transport becomes one of the most important 

decisions that companies make. The researchers examined the need for developing 

freight demand models which incorporate shipper or carrier behavior to represent urban 

goods movements accurately considering international freight flows. The situation 

becomes more complex for freight when the globalization of production and logistics are 

accounted for, as well as logistics considerations such as location and size of distribution 

centers, shipment sizes, and batch sizes.  Tavasszy, Ruijgrok, & Davydenko (2012) 

review how this requires complex, multifaceted logistics networks to manage freight 

transport from produce to consumer.  

Finally, Holguín-Veras & Thorson (2000) review one of the final challenges in modeling 

freight travel compared with passenger travel behavior, which is freight’s diverging time 

values.  Most passengers have roughly similar values of time (VOT), while some freight 

items (such as medical supplies) may have much more sensitivity to time than others 

(like bulk raw materials).  De Jong, Gunn, & Walker (2004) highlight how different 

characteristics of time value, size, and bulk make different commodities flow through 

logistics systems very differently.  Fresh flowers or microchips move very differently than 

wheat or industrial machinery.   

Holguín-Veras & Thorson (2000) and De Jong et al. (2004) explain how more decision 

makers are involved in freight movement patterns than in passenger movement.   They 

include shippers, carriers, brokers (including third part logistics or 3PL agents, 

warehouses, and receivers, as well as households as final customers).  These decision 

makers can fragment decision making for a single trip over several areas of 

specialization. 
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There are also other differences in the way that freight and passengers move around.  

While passengers usually anchor their daily tours around a primary purpose, such as 

work or school, freight tours often do not have a single, primary destination, but are 

organized so as to minimize vehicle miles in the process of making several customer-

specific deliveries (Kuzmyak, 2008).   

Unique Sector Characteristics 

The Transportation Research Board (2007) also found that MPOs encounter difficulties 

modeling freight because of a wide gap in institutional knowledge between logistics 

operators and many transportation planners.  It found that it is uncommon for 

transportation planners or modelers to know “how businesses make decisions on freight 

logistics,” making it difficult to assess the factors driving freight movement, which is 

particularly relevant in logistics models, or to understand the impacts on shippers and 

carriers of policy measures (Transportation Research Board, 2007). 

Challenges Unique to Urban Freight Models 

Urban freight modeling faces several obstacles to accurate modeling that are not 

encountered in regional freight modeling.  They include “land use patterns, barriers 

(physical and operational) to moving goods into and through a central business district of 

a city, and the presence of traffic congestion” (Regan & Garrido, 2001).  Urban trucking 

involves daily multi-stop tours that are not as common in regional (e.g. intercity) flows. 

What is picked up and dropped at each site is hard to identify.  Urban truck movements 

also often pass near or through residential areas using surface streets, creating locally 

concentrated environmental and safety issues.  Urban areas are where a good deal of 

intermodal transfer activity occurs between large truck-rail and truck-water terminals: 

notably around large and congested seaports.  Urban freight movements include lots of 

commercial or “service” trips that are much less common between cities.   
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Other Challenges 

In addition to general challenges, each family of freight demand modeling approaches 

has its own challenges.  As already mentioned, commodity-based models require 

commodity movement data that is often expensive and hard to obtain.   Moreover, it 

omits empty trips, and most methods of accounting for empty trips in a commodity-based 

model neglect “the interrelationship among empty trips, commodity flows, and the 

logistics of freight movements” (Holguín-Veras & Thorson, 2000).  However, commodity-

based models do include mode choice in the model, and recognize that freight 

movement derives from the demand for goods.  Trip-based approaches account neither 

for mode choice nor for the underlying economic and behavioral characteristics of 

commodity movement, though they do account for empty trips, which usually fall 

between 15% and 50% of total trips and the truck movement data required is usually 

more easily available (Holguín-Veras & Thorson, 2000). 

Local Trips (Commodity-Based Models) 

The United States Department of Transportation et al. (2010) identified one limitation 

with current commodity-based freight models: many of the local truck activities are not 

accounted for, e.g. they miss many short-distance urban area movements (mostly 

commercial “service” trips), which lead to the underestimation of truck trip volumes within 

the urban area.  

Modelling Methodology 
Trend and Time Series Analysis 

Trend and time series analysis extrapolates data on past freight movement to estimate 

future freight movement. Time series analysis can offer a parsimonious data requirement 

if past trends in freight movement activity are easily tied to just one or two explanatory 

variables. This may be the case where short to medium term (up to 5 year) forecasts are 

concerned, Past studies offer a variety of methods to choose from, including simple 
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growth factor methods, multiple regressions, exponential smoothing, artificial neural 

networks,  multivariate autoregressive, Box-Jenkins autoregressive and moving average, 

space time autoregressive moving average and space-time multinomial probit models 

(Southworth, 2011). 

Elasticities may be derived to show some sensitivity to external factors.  Advantages of 

such models include ease of implementation and low data requirements (Pendyala et al., 

2000). However, data sources have to date been limited to either freight moving through 

a limited number of high volume facilities (e.g., seaports) or to very a limited set of O-D 

flows. 

Four-Step Models 

Four-step models are the traditional approach to modeling travel demand.  They 

originated to model passenger (commuter) movements, and in subsequent years they 

have been adapted to address freight.  They may be either commodity-based or truck-

based depending on the type of data that their early steps generate.  They involve the 

following four steps: 

Trip generation 

Trip generation estimates the goods produced in and attracted to each TAZ (for 

commodity-based models) or the number of trucks that the activity in each TAZ 

produces (for truck-based models).  As previously discussed, modelers use observed 

data from surveys, GPS recordings, or other sources to derive standard generation rates 

based on certain attributes, which are normally at the TAZ level.  When there are 

activities whose generation rates diverge substantially from the standard rates, they may 

be treated as special generators.  Common examples are ports and intermodal (Beagan 

et al., 2007; De Jong et al., 2004).  The output from the generation step is either tons of 

goods or dollar value of goods (for commodity-based models) or number of trucks (for 
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truck-based model) that are produced in and attracted to each zone.  At this step, 

producing and attracting TAZs are not yet paired.  

Distribution 

The distribution step spatially matches trip or commodity productions and attractions 

between origins and destinations.  Depending on the output of the generation step, it 

allocates either commodity flows or vehicles based on commodity flow data or vehicle 

movement data collected from surveys or another source (Beagan et al., 2007).  Output 

is in tons of commodities or number of vehicles that move between two different zones.  

Gravity distribution is the most common form (De Jong et al., 2004; Kuzmyak, 2008; 

Southworth, 2002). 

Mode Split 

The mode split step occurs only in commodity flow models as truck-based models 

preselect the mode.  De Jong et al. (2004) lists different model types for addressing 

mode split: elasticity-based, aggregate, disaggregate, neoclassical, economic direct 

demand, micro simulation, and multimodal network based. 

Route Assignment  

Models that include a mode split step first convert commodity movements among origins 

and destinations by mode to a number of vehicles based on tonnage-to-vehicle ratios, 

using data sources such as the U.S. Census Bureau’s Vehicle Inventory Use Survey 

(VIUS).  Logistics models might also be used to convert commodity flow tons to vehicles 

by explicitly modeling supply chain decisions (De Jong et al., 2004).  The route 

assignment step places vehicles onto the transportation network.  Beagan et al. (2007) 

explain how the model needs to address time of day, road capacity, and truck 

prohibitions.  Routes may be assigned according to fixed paths connecting TAZs, or 

routed dynamically to account for congestion (Beagan et al., 2007; De Jong et al., 2004).  



41 
 

The model may load trucks onto the road network before or after automobiles, or it may 

simultaneously load trucks and automobiles, using multi-class assignment routines. 

Commodity-based models account for commodity movements among producers and 

consumers in space.  The fact that commodity-based freight deals directly with the 

goods movements that drive vehicle flows causes some researchers to recommend 

them over vehicle-based models (Kuzmyak, 2008; Southworth, 2002).  While their level 

of complexity may change according to the variables incorporated (Spear, 2005), 

commodity-based models often follow a “four-step” method based on passenger 

demand model’s four-step method (Cambridge Systematics et al., 2008).  Holguín-Veras 

& Thorson (2000) explain the commodity-based model steps in Table 5 below.  The 

model breaks the geographic area into discrete zones for which certain characteristics of 

commodity producers and consumers are known.  

Table 5: Model components of commodity-based “Four Steps” approach 

Step Approach 

1. Commodity Generation Commodity generation rates or zonal 

regression models 

2. Commodity Distribution Gravity models (simply or doubly 

constrained) or intervening opportunities 

3. Commodity Mode Split Logit models based on panel data.  Rarely 

done in urban area 

4. Vehicle Loading Loading rates based on previous surveys 

5. Traffic Assignment Standard traffic assignment techniques 

Source: Holguín-Veras & Thorson (2000) 

The first step, commodity generation, uses population, employment, and trip generation 

rates by commodity to estimate commodity productions and attractions in each zone 
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(Cambridge Systematics, National Cooperative Highway Research Program, & 

Transportation Officials, 2008).  Commodities are usually measured in dollars or tons 

(Spear, 2005).  Furthermore, available data may capture annual flows, prompting the 

need to convert from annual flows to daily flows (Spear, 2005).  Commodity distribution 

links productions in one zone to attractions in another, with assumptions about the 

decrease in attraction due to distance (Holguín-Veras & Thorson, 2000).  Common 

means of distributing commodities include the Fratar (or Furness) method, gravity 

models, or maximum utility-based logit models (Horowitz, 2006).  Generation and 

distribution outputs are often calibrated.  TRANSEARCH data is a common calibration 

dataset for statewide freight models (Horowitz, 2006).  Mode split estimates the amount 

of traffic that will use each mode with a discrete choice model.  As mode split models are 

very complex, so the utilization of existing mode split parameters are common 

(Cambridge Systematics et al., 2008).  Mode split may also follow a different fixed 

percentage or variable expression (Horowitz, 2006).  Vehicle loading is an intermediate 

step for freight travel demand that estimates the amount of freight that each vehicle will 

contain (Holguín-Veras & Thorson, 2000).  Finally, trip assignment gives each shipment 

a route on transportation infrastructure, typically through a freight truck only or multiclass 

assignment model (Cambridge Systematics et al., 2008). 

The four-step model is versatile in that it may use aggregate and/or disaggregate data 

(with suitable aggregation) to forecast freight or passenger travel demand.  It can also 

include trucks that do not carry freight, including safety vehicles, utility vehicles, public 

service vehicles, and business and personal service vehicles (Beagan et al., 2007) . 
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Truck Modelling 

Truck models often follow a modified version of the four-step approach that omits mode 

choice (Cambridge Systematics et al., 2008; Chow, Yang, & Regan, 2010).  Trucks are 

the only mode considered in this model, and therefore the model does not have a modal 

choice/shift component. Trucks are generally classified into light, medium, and heavy 

trucks. In the truck model, the trip distribution step typically utilizes a gravity model, in 

which the coefficients will be developed based on local surveys or from other sources, 

e.g. the Quick Response Freight Manual (Cambridge Systematics et al., 2008).  Most of 

these truck models use aggregate data to generate aggregate truck trips (Chow et al., 

2010). 

Chow et al. (2010) address the state of the practice in freight demand modeling, 

beginning with an extensive review by the National Cooperative Highway Research 

Program (Cambridge Systematics et al., 2008), which addresses the state of five freight 

demand model classes: Direct facility flow factoring methods, origin-destination factoring 

methods, truck models, four-step commodity flow models, and economic activity models.  

Each of these model classes has tended in practice to rely on aggregate data, which 

makes them “insensitive to economic behavior at the level of the firms that act as the 

decision-makers” (Holguín-Veras & Thorson, 2000).  In response to this sort of criticism, 

much recent research has focused on developing disaggregate models (Chow et al., 

2010; Southworth, 2011).  

In detail, the direct facility flow factoring method is a simple, relatively easy method of 

estimating future origin-destination-based truck movement that is most useful for short-

term projections.  The origin-destination factor method is similar to the previous method.  

However, it additionally considers mode split and assignment.  The four-step commodity 

model is derived from passenger models, and it has been used in states including Iowa, 
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Florida, Texas, Pennsylvania, and Wisconsin (Cambridge Systematics et al., 2008; Iowa 

Department of Transportation & Iowa State University Center for Transportation 

Research and Education, 2008; Pennsylvania Department of Transportation, 2007; 

Proussaloglou, et al., 2007).    The economic activity model has been used in Oregon to 

model freight based on land use and economic cost (Cambridge Systematics et al., 

2008; J. Y. Chow et al., 2010; Hunt et al., 2001). 

In the end, the most appropriate model depends on the area being modeled, including 

the size of the state, the data available, the organizational structure, and the economic 

activity.  For example, a large state like California seeking to model freight in the entire 

state would use a regional commodity-based model because of its size, the existence of 

several large MPOs, and the presence of a large port (Los Angeles-Long Beach), 

requiring a vehicle-based truck touring model (see (Ritchie, 2013)). 

Finely grained socio-economic data is necessary to produce and attract freight 

movements in freight travel demand models.  However, models have employed different 

levels of geographic detail and different attributes to generate truck-generation and 

attraction rates for different activities.  The goal is to isolate the activity attributes that 

best determine the number of trips generated so that truck trip generation rates can be 

estimated for any activity with given attributes. 

The most common level of geographic detail is the transportation analysis zone (TAZ) 

(Beagan et al. 2007; Hunt & Stefan, 2007; Kuzmyak, 2008) where urban area modeling 

is concerned.  However, there have also been attempts to use more geographically 

precise attributes to generate trips, including major land uses (Bassok, et al., 2011), 

more precise land uses (Fischer & Han, 2001), and locations of individual 
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establishments (Kawamura, et al., 2005; Ortuzar & Willumsen, 1994), though 

establishment-level truck generation rates were not part of a specific modeling process. 

Population and employment characteristics are the most common datasets used to 

determine truck generation rates.  (Kuzmyak, 2008) reports that Atlanta and Baltimore 

both use TAZ-level data on the number of households and employment in land-use 

characterizes office, retail, and industrial.  Calgary’s commercial vehicle model also 

generates tours from TAZ employment by establishment category, which are industrial, 

wholesale, retail, service, and transportation Hunt & Stefan, 2007).  Zone land uses are 

low density, residential, retail and commercial, industrial, and employment node (Hunt & 

Stefan, 2007).  Pendyala et al. (2000) reports that demographic, socio-economic, and 

factors capturing “levels of economic activity in different industry sectors” are used.  

Fischer & Han (2001) describe trip generation rates that rely on measures of land use 

intensity, including land acreage, building floor area, and number of employees.  

However, Fischer & Han (2001) also cite other economic indicators that may be used 

when data is available, including the number of container lifts.  The problem is that 

productivity varies significantly by industry, so aggregating land uses may cause 

inaccurate truck generation estimates.  Fischer & Han (2001) believe that land use 

analysis may need to be very disaggregate to capture meaningful differences in 

productions per employee.    This has caused several researchers to examine trip 

generation rates at the establishment level.  Bassok et al. (2011) used GPS truck 

movement data in the Puget Sound region to create trip generation rates for grocery 

stores, though the rates under-represented observed movements.  Ortuzar & Willumsen 

(1994) found “turnover, floor area and location/site area occupied by the firm, and the 

number of employees” to influence truck generation, though others (Kawamura et al., 

2005) found weak links with employees and floor area. Southworth (2014) provides a 
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review and listing of past efforts to disaggregate FAF and CFS regional commodity flows 

to the county and sub-county levels for statewide and multi-county MPO modeling of, in 

particular, truck freight movements (e.g. by using zip code areas as TAZs). 

 

Tour-Based Modelling 

Tour-based models are also referred to as trip-chaining models.  They account for the 

occurrence of back-to-back trips without returning to a home base, which might be a 

warehouse where loading and unloading occur.  A trip is a single movement between 

two endpoint origins and destinations.  Figliozzi et al. (2007) defines a tour “as the path 

that a commercial vehicle follows when it leaves its depot or distribution center (DC) and 

visits different destinations (two or more destination or stops) in a sequence before 

returning to the depot or DC during a single driver shift.” 

According to Kuzmyak (2008), private-sector logistics firms have for some time now 

modeled trip chains through dispatch algorithms to inform planning decisions.  Logistics 

firms benefit from proprietary movement data that makes it easier to model trip chains.  

Ruan, Lin, & Kawamura (2012) explain how freight operators often chain trips to form 

tours in order to minimize operating expenses while providing the best service to clients.  

Because commercial vehicles are more likely to chain trips than passenger vehicles, 

many traditional four-step models do not account for them (Holguin-Veras & Wang, 

2008).  Tour-based approaches to freight demand modeling address this particular 

behavior of trip chaining that is common among freight operators.   

There are greater data requirements for tour-based models than for truck-based models.  

According to Guo & Wittwer (2009), tour-based models require “vehicle travel diary data 

by type of establishments.”  The models predict vehicle types, tour purpose, number and 

location of stops for each tour. 
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Ruan et al. (2012) assert that tour-based approaches account for behavior and decision 

making processes better than those that do not overtly consider tours.  They apply the 

concept of tour chaining to data from the Texas Commercial Vehicle Surveys (Prozzi, et 

al., 2006; Prozzi, et al., 2004) covering five Texas cities or regions to identify tour 

chaining behavior.  Tour chaining occurs when a vehicle completes multiple tours within 

a day from the same or different base.  The authors find that tour chains offer the 

possibility of better modeling carriers’ delivery strategy than do tour-based approaches 

alone.  Moreover, “the tour-chain-based model provides more details in distribution 

strategy, distribution channel, and why and how the individual tours are bundled, which 

are not well understood in the freight and logistics modeling literature” (Ruan et al., 

2012).  

While much freight traffic covers long-distances, urban commercial traffic can affect 

congestion, pollution, and roadway maintenance costs in a significant way (Hunt & 

Stefan, 2007).  Furthermore, while transportation demand models often derive urban 

commercial traffic in a manner similar to urban passenger traffic, the two operate under 

different decision making, expense, and value of time dynamics (Hunt & Stefan, 2007). 

Hunt & Stefan (2007) examine Calgary’s commercial vehicle tour-based micro simulation 

model.  They identify three main characteristics of urban commercial traffic, saying that it 

has— 

 A large number of stops 

 No natural drop-off order 

 An almost exclusive use of roads (as opposed to waterways, rail, or air 

infrastructure) 

Hunt & Stefan (2007) assert that tour-based models best reflect the behavior of much 

urban commercial traffic, as opposed to traditional four-step models and their 
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derivatives.  Their tour-based micro simulation model for Calgary uses the following 

steps in Figure 7: 

 

Figure 7: Microsimulation Tour-Based Model 

(Source: Hunt & Stefan (2007)) 

Figliozzi et al. (2007) collected disaggregate information about truck tours in Sydney 

Australia to analyze tour characteristics.  Their analysis used eight months of truck 

activity sheets for a freight forwarder in Sydney.  They found an average of 6.8 trips per 

tour in Sydney.  This aligns with past studies that found an average of 6 trips per tour in 

Calgary (Hunt & Stefan, 2007), 5.6 trips per tour in Denver (Holguin-Veras & Patil, 

2007), and 6.2 in Amsterdam (Vleugel & Janic, 2004). 

Wang & Holguin-Veras (2010) developed an aggregate entropy-maximization tour-based 

freight model.  It comprises two components: a tour choice model and a tour flow 

distribution model.  The tour choice model creates a tour set aligned with observed 

average tour length.  The tour flow distribution model uses productions, attractions, and 

an impedance function to distribute trips, similar to a gravity model.  They applied the 

model to 1998 and 1999 truck data for the Denver area. The estimated tour flows closely 
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match the observed values with a mean absolute percentage error of 6.71%.  They 

determined model results to be relatively accurate and demonstrated the tour-based 

model’s potential for commercial vehicle movements in urban areas. 

Gliebe, et al. (2007) created an intra-urban commercial vehicle movement model for the 

state of Ohio.  It is a disaggregate model that will function in tandem with an aggregate 

commercial model, a person-travel—long-distance model (PT-LD), and a household-

based person transport model to form the four-part Ohio statewide model. Table 6 below 

depicts each sub model’s area of applicability.  Gliebe et al's (2007) disaggregate 

commercial model (DCM) addresses commercial trips under 50 miles long.  It is 

commodity-based with a structure similar to that of Calgary model. 

Table 6: Ohio statewide model’s sub models and area of application 

Parts of Ohio statewide model Application 

Disaggregate commercial model (DCM) Commodity-based commercial trips under 50 

miles 

Aggregate commercial model (ACM) Commercial trips over 50 miles 

Person-travel—long-distance model (PT-LD) “Service of professionally oriented business 

trips” over 50 miles 

Household-based person transport Home-to-work trips and personal work-based 

trips (E.g., lunch from work) 

Source: CQGRD, modified from Gliebe et al. (2007) 

 

Micro-Simulation Models 

There are other variations of the traditional four-step model.  Wisetjindawat, et al. (2007) 

proposed a commodity-based microsimulation model, which could be defined as a 
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model using “the behavior of each freight agent individually…to determine the 

characteristics of each freight movement”.  It generates commodity demand for each 

individual consumer business or establishment according to production and consumption 

of commodities based on micro-level characteristics of businesses and establishments in 

the modeling area.  They introduce the microsimulation model that incorporates 

elements from logistics science such as vehicle inventory, vehicle routing, and 

scheduling which have to date been largely absent from commodity-based models.  

Applied to Tokyo, Wisetjindawat et al. (2007) assessed ways to improve the model by 

including additional variables.  According to Kuzmyak (2008) such microsimulation 

models are an efficient way for “representing sequential events,” such as in urban truck 

models. 

Economic Activity Models 

Beagan et al. (2007); Federal Highway Administration (2007); and Pendyala et al. (2000) 

include description of economic activity models.  Economic activity models consist of 

economic/land use models and freight transportation demand models in interaction.  

They seek to capture commodity movements driven by the conversion of economic 

inputs to economic outputs (Pendyala et al., 2000).  Economic activity models require 

several types of data: socio-economic data for the economic/land use model, input-

output economic data for spatial modeling, land use data, and transportation network 

data (Beagan et al., 2007). 

Supply-Chain/Logistics Models 

Several researchers describe logistics models (J. Y. Chow et al., 2010; Guo & Wittwer, 

2009; Kuzmyak, 2008; Pendyala et al., 2000).  Logistics models fundamentally model 

decisions as products moving through the supply chain. They incorporate commodity 

flow movements in response to decision making by logistics agents (e.g., shippers, 
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carriers, freight forwarders) in search of low-cost channels and ultimately convert the 

commodity flows into vehicle movements to load onto the transportation network.  

Because of the complex decisions and multiple actors, logistics models may require 

further development for freight modeling (Pendyala et al., 2000).  According to (J. Y. 

Chow et al., 2010), logistics models may resemble tour-based models except that they 

model commodity flows whereas tour-based models analyze vehicle movements that 

result from commodity supply-demand considerations. 

Hybrid 

Beagan et al. (2007) explains the existence of hybrid approaches, which “blend 

commodity flow modeling techniques with freight truck modeling techniques,” (p. 6-1) 

while economic activity models combine an economic-land use model and a freight 

transportation demand model (p. 7-1).  Hybrid models combined a long-haul four-step 

commodity-based model with a short-haul three-step truck model to benefit from both 

commodity-based models’ effectiveness for modeling long-distance movements with 

truck-based models’ advantage in data availability for short-range movements.  It is 

important here that the two models not double-count movements.  A number of studies 

assign inter-county movements using a commodity-based model and intra-county 

movements using a truck-based model (Beagan et al., 2007). 

Other Methods for Freight Demand Projection 

MPOs and state transportation agencies may perform freight demand forecasts 

according to one of several methods, of which formal freight models are not the only 

options.  First, they may not forecast it at all, instead assuming that changes in flows will 

remain minimal or relying on informed expert opinions to project flows into the future.  

Some small eastern states do not develop model forecasts of statewide freight 

movements either because of lack of funding and because their size and homogeneity 
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may allow the assumption that freight and passenger traffic behave similarly (Spear, 

2005). They may also extrapolate from past trends, projecting freight volume into the 

future based on equations fitted to past data (Pendyala et al., 2000).  Finally, elasticity 

methods adjust freight flows according to changes in specific variables, though they are 

limited in accounting for changes in multiple variables (Pendyala et al., 2000).   

 

Strengths and Limitations of Current Freight Forecasting Models 

NCHRP Report 606 reviews the state of the practice of freight activity models and 

discusses five major classes of freight models and the data they need, including 

(NCHRP, 2008): 

 Direct facility flow factoring method (regression methods, etc.); 

 Origin-Destination factoring method (Transearch OD data, FAF OD data); 

 Three-step truck model (generation, distribution, assignment); 

 Four-step commodity model (generation, distribution, mode split, assignment); 

and 

 Economic activity model (integrated economic/land use forecasts and multimodal 

commodity demand including generation, distribution, mode split, and 

assignment).  

Chow et al. (2010) added another two important classes of freight models to the list 

above, which include “Logistic Models” and “Vehicle Touring Models”. As Fischer et al. 

(2005) concluded and Chow et al.(2010) reiterated, these two categories result from the 

need to improve the sensitivity of models to economics of commodities for policymaking 

(logistic models) and more realistically capture the movements of vehicles for impact 

assessment (vehicle touring models). Chow et al. (2010) also summarized the major 
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data needed for the two classes of freight models, including commodity flow data, truck 

load data, make/use and I-O tables, intermodal facilities, logistics costs, firm shipment 

sizes and distributions, and truck activity diaries (Chow et al., 2010). They also noted 

that the unavailability of data is the major reason for the few applications of these two 

classes of freight models.  

Table 7 summarizes the strengths and limitations of the seven classes of existing freight 

models. 
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Table 7. Freight Model Comparisons 

Model 
 

Strengths 
 

Limitations 

Direct 
facility 
factoring 

 

Multi-variable;  
“All-in-one” format;  
Corridor and mode specific. 

 
Not network based;  
No supply/demand, capacity. 

OD 
factoring 
(FAF) 

 

Available national data; 
Convertible to state & local scales from national 
scale; 
Course spatial data can be refined by local counts 
and optimal methods;  
Available future forecasts;  
Multimodal commodity flows;  
Multimodal vehicle flows;  
Regularly improved;  
Relatively low cost. 

 

Local and state data are proprietary;  
or estimated;  
Course spatial structure (CFS districts 
& counties);  
Static “snap shorts” of the future;  
Not directly integrated with economic 
census;  
Not predictive;  
Not seasonal or by hour of day. 

Three-step 
truck 
models 

 

Predictive model;  
Detailed level of analysis;  
Multimodal commodity flows. 

 

Data intensive;  
High data collection or purchase 
cost;  
Expensive to develop;  
Long development time. 

Four-step 
method  

Same as three-step;  
Explicit modal split;  
Connects commodities to modes. 

 
Same as 3-step method;  
Requires advanced user skills. 

Economic 
activity 
model 

 

Economic & land use data & forecasts integrated 
with the three- or four-step methods;  
Multi-modal & multi-commodity method; 
Simple factor methods based on historic traffic& 
freight trends & forecasts of economic activity;  
Applicable to special generator intermodal facilities, 
corridors, regional, & statewide scales;  
Easy sensitivity of assumed factors;  
Straight forward policy analysis of alternative modal 
operations & restrictions;  
Uses data from local, state & national sources. 

 

Linear relationships between economic 
activity & freight flow;  
Does not recognize differences in: 
values of freight output per ton, 
production per employee, transportation 
requirements per ton, or competition 
among facilities & modes. 

Logistic 
models  

Improves the sensitivity to economics of 
commodities for policymaking;  
Incorporate multiple intermediate stops to represent 
distribution channels;  
Equipped with behavioral distinctions which apply 
to the many decision-makers within the chain;  
Involves details on the movements of raw goods 
and finished products and focus on units of 
commodities. 

 

Requires a lot of data from different 
sources which are difficult to acquire, 
such as the data of make/use and I-O 
tables and logistics costs. 

Vehicle 
touring 
models 

 

Similar to the merits of logistic models, but the unit 
of analysis is vehicle instead of commodities; 
Most powerful to capture the movements of 
vehicles and decisions of carriers realistically for 
more accurate evaluation; 
May employ space-time multinomial probit model to 
forecast the distribution of freight flows over space 
and time; 
May allow truck tour-based microsimulation to more 
accurately forecast truck movements at local level; 

 

Also require a log of data which might 
be difficult to acquire, such as truck 
load data, intermodal facilities, firm 
shipment sizes and distributions, and 
truck activity diaries;  
It is often hard to validate the results. 

Source: Edited from NCDOT (2009) and Chow et al. (2010) 
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GPS-based data uses in Freight Planning/Modelling 
GPS data Uses in Passenger Modeling Cases 

Wolf & Lee (2008) explain that researchers have frequently used trip diaries to collect 

individual travel behavior data, though underreporting has been a recurring issue that 

has been difficult to quantify (Richardson, 2000).  Many researchers have attempted to 

extrapolate the missing data from the reported trips using data expansion techniques, 

some even accounting for underlying socio-economic patterns in reported travel data 

(Armoogum & Madre, 1997; Polak & Han, 1997; Richardson, Ampt, & Meyburg, 1995; 

Wolf, et al., 2003; Zmud & Arce, 2000). 

Global positioning system information offers the possibility of assessing the size of 

underreporting and creating corresponding corrective factors in travel demand models.  

It allows a different approach to accounting for trips that are not reported, as opposed to 

using expansion techniques on reported data since it uses observations instead of 

reported trips (Wolf et al., 2003): although GPS reporting of truck trips is currently limited 

in its ability to be representative due to sample size limitations.   

Bricka & Bhat (2006) list U.S. passenger travel demand surveys with GPS components 

prior to 2006 (Table 8).   
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Table 8: Passenger travel demand surveys with GPS components 

Study 
Year 

Conducted 
No. of 

Households 

No. of 
Households 
with GPS & 

CATI 

% of CATI 
Surveyed 

Households 
Participating in 

GPS Survey 

Level of Trip 
Under-

reporting 

Lexington 1996 100 84 84.0% NA 

Austin 1997 2000 200 10.0% 31% 

California 2001 16990 292 1.7% 23% 

Los Angeles 2001/2 23302 293 1.3% 35% 

Pittsburgh 2001/2 2553 46 1.8% 31% 

St. Louis 2002 5094 150 2.9% 11% 

Ohio 2002 6338 230 3.6% 30% 

Laredo 2002 1971 87 4.4% 81% 

Tyler-
Longview 

2003 2336 249 10.7% NA 

Kansas City 2004 3049 228 7.5% 10% 

Source: Bricka & Bhat (2006) 

 

Several surveys have employed GPS devices before, including in Lexington, KY (by the 

FHWA); Austin, TX; and Atlanta, GA.  The Federal Highway Administration’s study in 

Lexington, KY used GPS devices to record trips in vehicles for six days, though the GPS 

data differed substantially from what participants reported (Wagner, 1997; Wolf et al., 

2003).  A 1997 study in Austin, TX matching GPS devices with travel surveys allowed a 

clearer quantification of the differences between GPS records and individual reports 

(Pearson, 2001). The Commute Atlanta program, which aimed to assess the effects of 

converting automotive fuel tax, registration fee, and insurance costs into variable driving 

costs and was funded by the FHWA and GDOT, utilized GPS device to collected year-

long vehicle activity data in 2004 (Guensler, Li, Ogle, Axhausen, & Schönfelder, 2006). 

The second-by-second longitudinal vehicle activity data, allows comprehensive analysis 

of individual trip and activity demand, though it requires heavy automatic data 

processing (Guensler et al., 2006).  
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Wolf et al. (2003) review the functioning of the California Statewide Travel Survey in 

2001, which supplemented travel diaries with in-vehicle, self-installed GPS devices with 

a rooftop antenna and powered by a cigarette lighter.  The survey used initial sample of 

500 households with the expectation that between 100 and 200 households would drop 

out without completing all steps of the one-weekday survey.  The 500 households were 

chosen among the 16,500 households participating in the self-reporting survey (Wolf et 

al., 2003). 

 

GPS data Uses in Freight Modeling Cases 

M6 Corridor Freight Performance Measures 

Hudson & Rhys-Tyler (2004) outlined the use of GPS to develop an early example of 

freight performance measurement for the M6 highway corridor in the United Kingdom.  

The M6 runs north-south from the northwest of England into southern Scotland 

(Marshall, 2013).  The Freight Transportation Association commissioned a study in 2002 

to provide performance measures for the highway based on GPS devices installed in 

trucks.  The GPS devices were already present in the survey vehicles to manage 

operations (Hudson & Rhys-Tyler, 2004).   The pilot survey occurred between April 22 

and May 5, 2002.  It gathered the location of trucks in a wide area with latitude and 

longitude readings that could be on the M6 corridor, and it then compared the observed 

locations with a series of vectors defining the M6 corridor (between junctions1 and 21).  

Researchers made 153,085 observations of 15,184 trips.  Observations were taken 

every 21 minutes.  Each observation also included location, heading, speed, and 

observation time.  Observations from the same vehicle were linked into trips made of 

multiple observations.  The observations were analyzed to produce minimum, maximum, 

and median speeds for different times of day and different M6 segments (Hudson & 
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Rhys-Tyler, 2004).  They calculated average, space-mean speeds by dividing the 

distance traveled by the time elapsed.   

Researchers encountered several challenges.  The road was represented by a series of 

vectors, leading the distance and speed over the segment to be slightly underestimated.  

There were also segments when the apparent time to traverse a segment was 

unreasonably high due to trucks stopping for reasons unrelated to congestion, such as 

at a service station.  Performance measures will need to account for non-traffic-related 

stops (Hudson & Rhys-Tyler, 2004).  Researchers recommended using more frequent 

observations to improve speed accuracy.  Finally, GPS devices could often not 

distinguish between trucks on the highway or at an adjacent rest area.  Researchers had 

to exclude non-moving vehicles in rest areas. 

FHWA Freight Performance Measures 

The Federal Highway Administration measured the performance of five highways 

corridors (I-5, I-10, I-45, I-65, and I-70) that handle approximately 25% of loaded truck 

vehicle miles.  The American Transportation Research Institute (ATRI) gathered truck 

location and speed information for approximately 250,000 trucks in 2005 though GPS 

devices installed in each vehicle.  ATRI matched the truck locations to one of the five 

corridors when possible, allowing the Federal Highway Administration to assess average 

speeds on each segment.  The Federal Highway Administration handled privacy 

concerns by assigning each vehicle a randomly generated number for use in analysis 

(Federal Highway Administration, 2006). 

Melbourne, Australia 

Greaves & Figliozzi (2008) review the use of passive GPS sensors to gather freight 

movement data in Melbourne, Australia in June 2006. The survey used vehicle-installed 

passive GPS devices that were installed for this purpose.  GPS devices can encounter 
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several challenges, including lack of proper installation.  Therefore, Gestate sent a 

trained employee to install and remove each device.  A roof-mounted antenna enhanced 

signal, and the device tapped into the vehicles electricity via the cigarette lighter.  Similar 

devices have served in several passenger travel surveys (Greaves & Figliozzi, 2008).  

The pilot survey included 30 trucks with two or three axles based in the Melbourne area 

operating for several freight companies.  The survey lasted for one week, producing 210 

truck days of data.  The goals were to assess the willingness of freight shipping 

companies to participate in GPS surveys, gather and analyze disaggregate freight 

movement data, and explore the use of GPS data in performance measures which might 

incentivize shipper participation (Greaves & Figliozzi, 2008). 

To improve data accuracy, researchers eliminated identifiable errors by, for example, 

scrubbing out locations that implied a speed above 150 kilometers per hour.  

Researchers used algorithms to identify trip ends, defined as locations where the truck 

was stationary within 30 meter diameter for 240 seconds. The 30 meter diameter 

accounts for apparent fluctuation in the location due to GPS imprecision.  Researchers 

found that 240 seconds balanced the risk of falsely identifying trip ends when the vehicle 

was actually immobile for other reasons and missing real trip ends.  This still over-

identified trip ends in some cases, so a researcher manually checked short trips 

afterwards.  Algorithms would also use previous data to extrapolate a truck’s starting 

position when the GPS device did not have a signal at the start of a trip (Greaves & 

Figliozzi, 2008). 

Corridor Travel Time Benchmarking in Washington State 

McCormack & Hallenbeck (2006) describe a corridor travel time benchmarking study 

that occurred in Washington State to compare corridor performance before and after 

roadway improvements.  Researchers used two techniques to gather truck information: 
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Commercial Vehicle Information System and Networks (CVISN) and GPS.  CVISN are 

electronic tags installed on 30,000 trucks in Washington that register at state weight 

stations and at some ports.  Researchers deduced travel time from sequential CVISN 

device detections.  Secondly, researchers installed 25 GPS devices onto trucks.  The 

devices were powered by truck cigarette lighters and recorded location every five 

seconds.  Researchers downloaded the data every three weeks and identified stops 

over three minutes as trip ends.  A specially coded C++ program assigned GPS 

measures to road segments. 

Puget Sound Region 

The Washington State Department of Transportation (WSDOT) used truck GPS data to 

develop performance measures for freight transport in the Puget Sound region, focusing 

on a three-week construction project on the I-90 bridge and utilizing spot speeds of GPS 

data to analyze roadway system’s reliability (McCormack, et al., 2010).  Ma et al. (2011) 

describe how WSDOT acquired commercially available GPS truck movement data from 

three GPS device vendors able to provide movement data for over 2,500 trucks per day 

and geocoded it to fit both onto the road network and into traffic analysis zones.  

WSDOT worked in collaboration with Transportation Northwest (TransNow) at the 

University of Washington and the Washington Trucking Associations (McCormack et al., 

2010).  WSDOT processed the data into reduced datasets for each company that only 

included the same relevant data columns to speed the analysis process.  Then the 

researchers processed the data using algorithms to eliminate false readings, detect trip 

starts and ends, and correct for signal loss.  Trip start and end identification is important 

to correctly build origin-destination pairings.  Finally, they developed performance 

measures related to traffic flow, speed, distance, and variability, which they integrated 
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into a web-based performance measurement tool for state transportation employees (Ma 

et al., 2011). 

Gauteng, South Africa 

Joubert & Axhausen (2011) used existing GPS devices in 31,053 vehicles in Gauteng 

province, South Africa to develop provincial productivity metrics.  The data was gathered 

over the first six months of 2008.  The GPS devices maintained by DigiCore Fleet 

Management transmit data every five minutes including location and vehicle ignition 

status.  Researchers identified trip ends in function of speed and vehicle ignition. 

Osaka GPS Route Identification 

Yokota & Tamagawa (2012) sought to overcome a challenge with using GPS devices: 

assigning vehicles to the correct road when roads are near each other or even above 

one another.  Researchers used GPS data collected from trucks in the Osaka, Japan 

region in 2009.  Osaka features some highways on bridges running directly above and 

parallel to local roads.  Thus, determining which road the truck is on based purely on 

present location is impossible.  Therefore, the researchers developed an algorithm to 

assign GPS readings to roads based on past, present, and future movements and based 

on road network connections. For example, future readings would reveal the road that 

the truck had occupied in the past based on where it goes if the raised highway and local 

road separate at some point.  Researchers validated the algorithm, which correctly 

assigned all 100 entrance and exit ramp movements.  

Georgia Truck Freight Corridor Measures of Performance 

Southworth & Gillette (2011) provided a review of the latest information on truck freight 

performance metrics. They also developed a truck freight performance template and 

applied it using a multi-source dataset to the I-75 corridor between Macon and Valdosta, 

the latter city located at the Georgia/Florida border. By combining ATRI GPS data on 
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truck speeds with Georgia DOT and FAF truck class specific traffic count data, they 

derive average corridor transit times, fuel consumption, accident and emissions 

estimates; as well as a travel time reliability measures which they combine these 

measures with the results of truck cost modeling to estimate the dollar cost of delays to 

truck transport. 

Opportunities 

Provide Disaggregate Data 

Greaves & Figliozzi (2008) noted several opportunities for GPS-based freight movement 

data, one of which is to provide disaggregate information for trip-based freight demand 

models. 

Develop Performance Measures 

GPS data can help to develop performance measures, which Greaves & Figliozzi (2008) 

say might incentivize truck companies’ participation in similar surveys.  It might also be 

able to be combined with truck weight to inform pavement management techniques, or 

emissions or fuel consumption models might be able to use the truck speeds from freight 

GPS surveys. 

Since 2002, the American Transportation Research Institute (ATRI) has been working 

with the Federal Highway Administration to explore methods and approaches for 

measuring freight performance (Jones, Murray, & Short, 2005). McCormack et al. (2010) 

conclude that GPS data can be used in a confidential way to provide average travel 

rates along major interstate corridors. Currently, ATRI’s FPM database contains billions 

of truck data points from several hundred thousand vehicles spanning more than 7 

years, and the data includes periodic time, location, speed and anonymous unique 

identification information (American Transportation Research Institute, 2012; 

McCormack et al., 2010). 
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To support performance measures in the Puget Sound Region, WSDOT assigned all 

trips to one of three trip types based on trip distance, time at trip end, and path traveled 

(Ma et al., 2011).  The performance measures are based on travel analysis zone origin-

destination pairs rather than specific roadways to “monitor network performance 

between economically important areas even when truck drivers choose multiple 

connecting routes” (Ma et al., 2011).  Actual performance measures include measures of 

speed, travel time, distance, and variability (Ma et al., 2011; Southworth & Gilette, 2011). 

Logendran, Peterson, & Northwest (2006) installed GPS units on 14 trucks from two 

different companies in the Portland, Oregon area to gain information about commodity 

flows and the potential impacts on highways managed by the Oregon Department of 

Transportation.  The research team analyzed truck movement data, measuring the 

average number of stops per vehicle, travel time between stops, road usage per truck 

per day, and drivers’ response to congestion in terms of route changing.  Results 

suggested that truck drivers persisted in their routing during peak hours, though at lower 

volume. 

Feliu, et al. (2013) and Pluvinet, et al. (2012) used a GPS-equipped smartphone 

application to collect and analyze GPS data on urban truck movements in Bilbao, Spain 

(G. Feliu et al., 2013) and Lyons, France (Pluvinet et al., 2012).  The research teams 

distributed smartphones to truck drivers equipped with applications that tracked the truck 

location at two-second intervals.  The research team used recorded GPS data to 

estimate fuel consumption and carbon dioxide emissions. 

Wheeler & Figliozzi (2011) collected GPS data, loop sensor data, and incident data from 

an Oregon Department of Transportation’s transportation management system to 
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develop highway performance measures for heavily trafficked freight corridors.  Freight-

specific performance measures included congestion, travel time, cost, and emissions.  

 

Challenges 

Identifying Trip Ends 

Automatically identifying trip ends has proven to be a recurring problem in many case 

studies, with most authors concluding that there is an inherent trade-off between missing 

real stops of short duration and falsely identifying trip ends when the vehicle was really 

stopped for another reason.  Most adjusted their working definitions of a trip end and 

examined data portions manually to minimize the falsely identified or missed trip ends. 

In the Puget Sound region, properly identifying trip ends based on the length of time for 

which a truck is immobile missed many real trip ends.  An immobility threshold time of 

three minutes excluded certain trip ends that were found manually.  WSDOT overcome 

the challenge by including whether the engine was off or the vehicle was in park in the 

algorithms that identified trip ends (Ma et al., 2011).  In each case, it appears that 

adjusting the identification algorithms and checking manually for accuracy can help 

insure that as many trip ends are accurately identified and as few omitted as possible 

(Greaves & Figliozzi, 2008). 

Du & Aultman-Hall (2007) compared passenger travel diaries and corresponding GPS 

data from Lexington, KY between March 2002 and July 2003 to create a trip 

identification algorithm.   The length of time stopped did not capture all trip ends and it 

omitted others.  Du & Aultman-Hall (2007) found that the most accurate algorithms for 

identifying passenger trips ends accounted for heading changes and departures from the 

road network (e.g., to enter a parking lot) in addition to minimum time stopped. 
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Sharman & Roorda (2011) used clustering to assess repeated visits to the same site by 

freight trucks.  They also compared truck travel diaries and corresponding GPS data for 

six Toronto-area trucks over three months in 2007.  Additionally, they had access to fleet 

management GPS data for 818 trucks with 40 companies over one month in 2006.  They 

found that Ward’s method is the most accurate method for clustering trip ends around a 

site.  The method has three steps: (1) Create a matrix showing the distance between all 

points.  Each point is a unique cluster.  (2) Merge closest two clusters and recalculate 

the matrix.  Continue until all points are in one cluster. (3) Process can be stopped at 

different points to form different numbers of clusters.  The researchers confirmed Ward’s 

method’s accuracy by comparing results with other indices. 

Obtaining Proprietary Movement Data 

In the Puget Sound region, researchers faced difficulty acquiring data (Ma et al., 2011).  

While most truck companies contacted agreed to share their GPS data, the technical 

difficulties of integrating the information into a single usable format proved 

insurmountable.  GPS device vendors were a more practical data source.  Ma et al. 

(2011) outlined several advantages and disadvantages of obtaining truck movement 

data from GPS device vendors.  Among the advantages, the vendors had consolidated 

data for several truck companies, they more consistently had technical expertise, and 

they were able to strengthen the provider relationship through a legal contract.  Among 

the disadvantages that (Ma et al., 2011) cited are the privacy concerns that complicated 

contract negotiations, the fact that vendors organized data in ways more suited to 

industry than research, and that the researchers continued to pay for data throughout 

the project. 

Similarly, in Melbourne, Greaves & Figliozzi (2008) outlined challenges that the survey 

encountered in collecting and analyzing GPS data for freight models.  Fear of losing 
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proprietary information or being placed in a competitive disadvantage compared with 

companies that do not participate makes freight companies hesitant to participate in 

GPS-based freight movement surveys, and drivers also have privacy concerns.  

NCFRP Report 08 offers the following criteria for selecting a GPS vendor: 1) provides 

national service coverage area to make sure the consistency of data and data 

formatting; 2) provides the necessary truck movement data, e.g. data, time, location; and 

3) providing to some degree of archived historical data (Cambridge Systematics, 2010).  

Network Modeling 

Researchers on the M6 Corridor found that accurate network modeling affected 

performance measure accuracy (Hudson & Rhys-Tyler, 2004).  The road was 

represented by a series of vectors, leading the distance and speed over the segment to 

be slightly underestimated.  There were also segments when the apparent time to 

traverse a segment was unreasonably high due to trucks stopping for reasons unrelated 

to congestion, such as at a service station.  Performance measures will need to account 

for non-traffic-related stops (Hudson & Rhys-Tyler, 2004). 

Data Accuracy and Lost Data 

In the California Statewide Travel Survey, researchers noted a few difficulties with the 

GPS data collection process. For example, these difficulties included delayed GPS 

recording due to cold-engine starts.  Since the GPS devices received power through the 

vehicles’ cigarette lighter, they did experience “acquisition delays…when left unpowered 

for more than 30 minutes,” causing them to omit trip origin.  The GPS also recorded 

gaps in trips that were reported as one by the driver, due likely either to trip chaining 

“since the gaps between consecutively recorded GPS trip end and start signals are 3 to 

13 minutes.”  They could also have been due to signal obstructions, such as tunnels 

(Wolf et al., 2003). 
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In Melbourne, researchers found that gathering accurate GPS data was another 

challenge for the following reasons: there are limits imposed by the US-military on the 

devices’ ability to precisely determine location, loss of signal due to obstructions like 

trees, tunnels, or tall buildings, and finally because of “cold starts” (Greaves & Figliozzi, 

2008).  In cold starts, the beginning of a trip is absent from the data because of the time 

it takes to acquire satellite connections, which can be as high as 15 minutes when the 

vehicle is moving.  When there are previous data points, it is possible to extrapolate the 

trip start location based on the previous locations.  Still, manual examination of some 

short trips may be needed (Greaves & Figliozzi, 2008). Researchers in the Puget Sound 

area encountered similar challenges (Ma et al., 2011).  The researchers therefore 

excluded trips from certain performance calculations which were likely due to GPS 

location misreads, including trips with extremely fast speeds, trips with very short time or 

distance, and trips outside the study area.  Finally, algorithms addressed signal loss and 

signal “jiggle,” which is where the location wobbles around a certain point due to 

inaccuracies in the GPS system.  To address signal loss, algorithms extrapolated from 

the last recorded positions and the first position when the signal is reacquired, while 

algorithms also marked detected trips possibly resulting from signal jiggle for manual 

inspection (Ma et al., 2011).  
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SECTION III. TOUR-BASED FREIGHT DEMAND 

MODEL  

Framework of the Tour-Based Truck Demand Model 
 

Prior to 1990 urban travel rarely modeled truck trips separately.  Typically in these 

models, trucks were implicitly included in the non-home-based (NHB) trip category and 

are rarely given much thought. Since the 1990’s, however, trucking’s increasingly 

important role in air quality conformance, traffic congestion, and economic growth have 

all an increased attention has been paid to estimating truck movement separately. 

Initially, and still today, nearly all of these truck trip models use the conventional 

aggregate four-step methodology: paying limited attention to the links between 

commodity flows, truck types, trip patterns, trip lengths, or to data rich comparisons 

needed to link truck origin-destination flows and  truck counts. 

 

Research over the past decade (see Section II above) indicates, however, that a true 

goods movement (a.k.a. freight demand) model would cover all modes of freight and 

would provide a very detailed representation of how material is transported throughout 

its useful life.  Such a model would cover shipping of raw materials to factories, transfer 

of partially finished goods between factories, delivery of finished goods to wholesalers 

and retail distribution centers, distribution of products to stores, and transfer of recycled 

goods from consumers to processing centers.  It would also address intermodal 

cooperation and competition, which is critical in the freight business.  Finally, such a 

model would be usable for goods movement policy analyses on a regional or larger 

scale, as well as be able to provide data on truck trip movements for regional travel 

models.  A good deal of effort is currently being devoted to the development of such 

models and the data bases needed to develop and support them.  However, the state of 
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the art in true goods movement modelling is not yet sufficiently developed to the point 

where it is easily adoptable by most urban travel forecasters.  And since the need for 

truck volumes at the link level is immediate, that tends to be where much of the practical 

effort is currently focused. 

But even within the context of a truck trip model, researchers have begun to question 

whether a different modelling approach is warranted.  In recent years, a new form of 

personal travel model has begun to be adopted: the activity-based model (often referred 

to as “ABM”).  Instead of estimating zonal aggregate travel statistics, the new approach 

is completely disaggregate.  Each person’s travel is estimated, in terms of round-trip 

tours that begin and end either at home or the workplace.  Usually, traffic analysis zones 

are still used to describe and organize demographic data and the transportation system, 

but all travel is described in terms of tours by individuals.  Many of these tours have 

intermediate stops for various purposes.  This is recognized to be more representative of 

the way in which people actually travel.  Typically, these new models require new home-

interview surveys and lengthy and expensive calibration efforts.  Since a standard 

framework of such models does not yet exist, each one is highly customized, which also 

increases the development effort. 

Some analysts have developed simplified procedures to apply disaggregate tour-based 

models.  These efforts do not attempt to represent travel in as much detail as a true 

ABM and they may be based on survey data borrowed from other cities.  However, a 

simplified approach has been shown to provide many of the benefits of a true ABM at a 

small fraction of the development time and cost, complexity, and model run time.  A 

good example is a model developed in 2010 for Glynn County, GA (Brunswick).  This 

model was developed in six months for less than $50,000 and used the same inputs as 

the state DOT’s four-step model for that region.  It uses standard travel forecasting 
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software (Cube), operates on a conventional computer, and runs very quickly.  For the 

model user, it looks virtually the same as any other travel model. 

Some analysts have theorized that this disaggregate tour-based approach could be used 

to model truck trips as well.  Efforts to do so date back to the early 1980s (Southworth, 

1982a, 1982b), but were hampered for years by lack of suitable data and insufficient 

interest in spending money to collect it (and this was before GPS and other vehicle 

tracking options were available).  In fact, this approach might well be particularly suited 

to estimating truck travel, since many truck trips do make two or more stops daily 

between origin and destination.  Also, truck travel is considerably more diverse in nature 

than personal travel, which would seem to make it suited to a disaggregate approach.  

For example, a truck hauling goods from a factory to a warehouse might stop at one 

location for the driver to eat lunch and at another location to take on fuel.  Most current 

models ignore those stops, focusing on the main tour origin (factory) and destination 

(warehouse).  However, a tour-based model would capture the intermediate stops and 

reflect the implications of those stops on VMT. 

A literature review suggests that until recently, most of the work on truck tour models 

was conducted in a research setting.  A major problem has been obtaining the kind of 

detailed data necessary to develop such models.  Cohen (2007) used an establishment 

survey to develop a commercial tour model as part of the Ohio statewide travel model.  

Ruan, Lin, & Kawamura (2011) used similar data to develop a truck trip chaining model 

for Texas.  Russo & Carteni (2004) and Wang & Holguin-Veras (2010) described 

research approaches to address this problem.  Samimi, Mohammadian, & Kawamura 

(2010) have authored several papers that describe the state of the art, provide reasons 

to consider tour modelling, and outline a methodology for estimating truck tours on a 
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nationwide basis. Outwater et al. (2013b) describe a proof-of-concept study for a tour-

based and logistics supply chain model for the Chicago area. 

Perhaps the most directly relevant prior research was documented by Kuppam et al. 

(2013) in a presentation at the May 2013 TRB Planning Applications Conference.  He 

described a tour-based truck model developed for the Phoenix area that was based on 

truck GPS data.  That model includes components for tour generation, stop generation, 

tour completion, stop purpose, stop location, and stop time period.  Building upon 

previous work, the model is a series of connected logit models leading to a set of trips 

that can be assigned to a network in the conventional manner.  This reference was used 

as a principal source in developing the modeling framework used in the present project. 

The proposed new framework for this model builds upon the work of Kuppam et al. 

(2013) and the innovative model for Brunswick, GA, by Allen (2011).  Truck movements 

are modelled as individual tours, which may or may not return to the starting point on a 

daily basis and which may or may not have intermediate stops.  A series of logit models 

are applied and Monte Carlo simulation is used to identify the tour’s main destination 

zone, the number of intermediate stops, the stop locations, and the time period of the 

tour’s start.  Some of these steps are identical to the work of Kuppam et al. (2013), but 

some simplifying assumptions are made (as in (Allen, 2011)) that make the problem 

more tractable within the limited budget available.  In addition, the process needs to be 

somewhat generic in that it is being developed in two different sized cities (Atlanta, 

Birmingham) and is intended to be transferable to other cities.  Also, this is not purely a 

research tool, but provides a “real world” model that is being applied using commercially 

available software, validated to traffic counts, and integrated with the region’s existing 

model set. 
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As with the model in Kuppam et al. (2013) and as described below, this project uses 

truck GPS data provided by the American Transportation Research Institute (ATRI) for 

the two regions.  Although this data provides excellent information on origin, destination, 

and stop locations, it must be used with caution, as it represents an unknown sample of 

the universe of truck trips.  Due to data confidentiality requirements, nothing is known 

about the type of vehicle or type of ownership (company vs. owner/operator).  It is 

virtually impossible to calculate any reasonable expansion factor so that each record can 

represent a known fraction of the universe.  Nor can the purpose of each stop (or of the 

whole tour) be determined.  

Figure 8 illustrates the components of the proposed model structure.  Each component 

is described in more detail below. 

   

Figure 8: Model Structure 

 

The study model is a tour-based truck model with input and calibrating data from truck-

mounted GPS units.  As such, the model estimates truck movements rather than 

commodity flow or movements of non-road-based freight vehicles.  Tour-based models 
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promise improved modeling accuracy because they account for more fundamental 

dynamics than models for individual truck trips.  Tour-based models recognize that 

movement and routing decisions do not view each segment of a multi-segment trip chain 

separately, but rather make decisions that maximize the utility of the entire tour (i.e., trip 

chain) rather than any given segment.  Each tour is assumed to have a “home” zone 

where the truck starts and ends the trips, a primary destination, and intermediate stops.  

Model output is in units of truck tours rather than commodity flows. 

The model uses truck-mounted GPS data as model inputs and calibrators.  Data 

consists of records containing the truck ID, start date/time, start zone, end date/time, end 

zone, and travel distance (calculated from latitude/longitude).  Early data analysis 

converts raw GPS data into truck tour records that can serve as model inputs.   

 

Tour Generation: The tour generation submodel produces truck tours in each travel 

analysis zone based on zonal characteristics.  Travel analysis zone productions were 

based on the following socio-economic variables used by the Atlanta Regional 

Commission. 

 Employment in eight categories 

 Population 

 Households 

 University enrollment 

 Land area 

 Zone type: a categorical variable ranging from 1 (central business district) to 7 

(rural) on the basis of the population and employment density in the subject zone  
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 “Truck zone flag,” which is a binary variable that takes the value of 1 for zones 

that have been designated as a “truck zone” based on the generation of above 

average truck trips per employee.  Examples include industrial parks, 

warehousing areas, truck stops, quarries, intermodal terminals, etc.   

Output from the truck generation model was used to scale ATRI GPS truck data by using 

expansion factors.  Expansion factors for each county are shown in the later section.  

Next, the tour records were summarized by the zone of the tour main origin.  Then, a 

Cube script was written to calculate these ARC and derived variables described above.  

This produced a file with one record per zone with the observed data and several 

candidate explanatory variables.   

Finally, the model was validated by applying it to zone-level data and comparing the 

outputs to the observed tours.  The model team made several adjustments to check for 

inconsistencies, spatial mismatch, external trips, or other factors distorting submodel 

outcome.   

Main Destination Choice: The tour main destination choice submodel identifies a 

primary destination zone for each tour produced in the tour generation submodel.  The 

tour destination choice submodel calculates the probability of each zone being a primary 

destination for tours originating in every other zone.  The probabilities are based on each 

potential destination’s utility.  The submodel applies to internal-to-internal and external-

to-internal trips.  Internal-to-external trips are treated differently (a description can be 

found in a later section). The destination choice submodel uses a logit form to calculate 

the probability of each destination, using the following equation. 
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where ‘p’ is the probability of going from zone i to zone j, ‘x’ is the range of candidate 

destination zones, and ‘U’ is a linear function of various attributes of the origin zone i and 

destination zone j.   

Intermediate Stops: The intermediate stop submodel identifies if each tour contains 

intermediate stops, and if so how many.  The first submodel step estimates the number 

of intermediate stops on the way from the tour origin zone to the tour main destination 

zone, and from the main destination zone back to the origin.  The step uses a 

multinomial logit model with choices from zero intermediate stops to a maximum number 

of intermediate stops.  The maximum number in the Atlanta model is six stops because 

analysis of GPS data revealed that 91.3% of tours made six or fewer stops.   

The second step uses zone attractions to identify destination zones for each 

intermediate stop.  This submodel identifies each intermediate stop independently of 

those that precede or follow it.  This is different from some models which predicate later 

stop locations based on earlier stops. Treating each stop independently greatly 

simplified stop identification processing requirements and makes the model easier and 

faster to run.  Otherwise, the intermediate stops model resembles the main destination 

choice submodel.  

Time of Day: The time of day submodel splits tours into different time of day categories 

based on observed trip times in the GPS data and a fixed set of factors derived for each 

trip purpose.  The submodel applies calculated probabilities to each generated truck 

tour.  The entire tour is assigned to a period, based on the start time.   
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In the Atlanta truck tour model, the time of day submodel uses the four time periods 

currently used by the Atlanta Regional Commission: AM peak = 6 – 10 am, Midday = 

10a – 3 p, PM peak = 3 – 7 pm, Night = 7p – 6am.   

Trip Accumulator: The trip accumulator submodel takes the output tour records from 

the previous submodels and breaks them into individual trips (origin – stop, stop – stop, 

stop – destination), in preparation for assignment.  Separate trip tables by period are 

then built.  These are aggregated to daily trips for the purpose of computing an 

estimated daily trip length frequency distribution.   

Traffic Assignment: The traffic assignment submodel assigns each tour segment to a 

route on the road network.  As the freight model is intended for use in tandem with 

existing passenger travel demand models, the traffic assignment submodel integrates 

into existing traffic assignment models for the Atlanta Regional Commission and the 

Birmingham Metropolitan Planning Organization.   

 

Background and Study Areas  
 

The research team built tour-based truck models for two southern metropolitan areas: 

Atlanta and Birmingham.  The Atlanta model was built in coordination with the modeling 

team at the Atlanta Regional Commission (ARC).  It covers the 20-county area for which 

the ARC models travel demand and derives air pollution emissions.  The counties 

include Barrow, Bartow, Carroll, Cherokee, Clayton, Cobb, Coweta, DeKalb, Douglas, 

Fayette, Forsyth, Fulton, Gwinnett, Hall, Henry, Newton, Paulding, Rockdale, Spalding, 

and Walton counties.  While the Regional Transportation Planning Commission of 

Greater Birmingham covers the six counties of Jefferson, Shelby, Blount, Chilton, St. 
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Clair, and Walker, the travel demand model covers the two core counties of Jefferson 

and Shelby only. 

The Atlanta Regional Commission maintains the regional travel model for the Atlanta 

area.  This is a 20-county area covering most of north Georgia (see Figure 9). 

 

 

Figure 9: Twenty-county area modeled by the Atlanta Regional Commission 

 

In 2005, a new trip-based truck model was developed for ARC, calibrated to 2000 traffic 

counts.  This model included three sub-purposes: Commercial, Medium Truck, and 

Heavy Truck.  Commercial represents a new type of light-duty trip that is non-personal in 

nature.  Examples include cars, light trucks, and vans used for deliveries, tradesmen, 
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service vehicles, and government vehicles.  Medium trucks represent buses, vehicles 

with two axles and six tires, and single-unit vehicle with three or four axles (FHWA 

classes 5-7).  Heavy trucks are either a single or multiple trailer combination (FHWA 

classes 8-13).  In 2010, the truck model was updated and recalibrated to match 2005 

counts. 

A significant development in Atlanta travel forecasting is the culmination of a nearly ten 

year effort to develop a detailed, state of the art activity-based model (ABM) for personal 

travel.  For some time now, this process has been in its final development stages and 

has been applied in parallel with the older four-step trip-based model.  Sometime in the 

near future, the ABM should be formally adopted as ARC’s principal travel forecasting 

tool.  (However, some components of the ABM, such as commercial/truck and external 

travel, will remain as four-step aggregate trip-based models.) 

For many years, ARC has used a traffic analysis zone system consisting of 2,027 

internal zones and 91 external stations, for a total of 2,118 zones.  ARC recently 

embarked on a major effort to expand its zone system to 5,873 internal zones and 108 

external stations, for a total of 5,981 zones.  This will provide greatly increased spatial 

detail. 

The Regional Planning Commission of Greater Birmingham maintains the regional travel 

model for the two-county core Birmingham area (see Figure 10). RPCGB is responsible 

for 6 counties, but the travel demand model only covers the Metropolitan Planning Area, 

which is the census defined urbanized area + areas that will likely become urbanized in 

the next 20 years. 
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Figure 10:  Regional Planning Commission of Greater Birmingham Modelled Area 

 

The existing (999 zone) RPCGB model includes a truck component.  This process 

creates a combined truck and taxi table, using parameters borrowed from the literature.  

No information was provided on the definition of “truck” in the model, or the calibration or 

validation of truck trips in the existing model. 
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Data Collection 
 

Truck Definition 

 
In developing truck models, there is an issue with regard to truck definition.  The Federal 

Highway Administration (FHWA) classification system recognizes 10 types of trucks. 

FHWA Classes 4 through 7 are medium-duty trucks; Classes 8 through 13 are heavy- 

duty trucks. The current ARC truck model is based on this FHWA’s vehicle classification: 

Medium Truck (single unit, 2-3 axles) and Heavy Truck (semi-trailer, 4+ axles) (Figure 

11). 

 
However, the ATRI’s national database is based on the maximum loaded weight of the 

truck using the gross vehicle weight rating (GVWR). Gross weight is defined by FHWA 

as follows: “Gross vehicle weight means empty vehicle weight plus cargo weight”. 

ATRI’s GVW database suggests that 89% of the population is Class 8 and the remaining 

11% have GVW putting them in the Class 7 or smaller. Additionally, ATRI estimates the 

following: (1) 72% Very Large or Large Fleet; 28% Small or Medium Fleet, (2) 83% 

Truckload; 17% Less-than-truckload, and (3) 83% For-hire; 14% Private; 3% other 

(Figure 12). 

 

http://en.wikipedia.org/wiki/Gross_vehicle_weight_rating
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Figure 11:  FHWA’s 13 Vehicle Category Classification 

(Source: Federal Highway Administration) 
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Figure 12:  GVW based Truck Classification 

(Source: Oak Ridge National Laboratory, Center for Transportation Analysis, Oak Ridge, TN.  
Weight category definitions from 49CFR565.6 (2000)) 

The research team assumes that the ATRI’s truck GPS data provides an equivalent of 

the sum of MTK + HTK trucks used in ARC’s model.  This is a caveat and suggests that 

comparing the model outputs should be conducted with great care to make analyses 

meaningful due to the lack of truck classification in the collected GPS truck data.  
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GPS data processing 

The American Transportation Research Institute (ATRI) provided truck movement data 

for the Atlanta and Birmingham metro areas.  Trucks traveling through these areas have 

GPS units that record the truck’s location, the date, and the time of day at regular 

intervals.  These location points and times provide a record of the truck’s movement. 

ATRI maintains a database of truck locations based on in-truck GPS units.  ATRI 

extracted a sample of truck “pings” from a sample of trucks in and around the Atlanta 

and Birmingham areas: February, May, July, and October of 2011. 

A “ping” is a signal that transmits a record of the time, date, and vehicle location 

(latitude/longitude).  These records are stored on a device on-board the truck and later 

downloaded.  Truck operators provide the data to ATRI, who remove the identifying 

information and repackages the data for sale. 

 

Figure 13:  Atlanta Truck GPS Data 
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Figure 14:  Birmingham Truck GPS Data 

The data consists of 14,062,934 records for the Atlanta area and 4,488,840 records for 

the Birmingham area, each identifying the date/time at two separate locations, along with 

the traffic analysis zone (“zone”) at each location (the original data included the 

latitude/longitude at those locations, but ATRI geocoded those to ARC zones).  

Considerable processing was required to convert this information into tours.  The 

following steps were used: 

- Delete records on weekends and holidays. 

- Remove records with improper geocoding. 

- If the Start and End times on a record are on different days, delete the record 

because we don’t know what happened to the truck during that period (exception: 

if the Start/End time closely span midnight over two consecutive days, keep the 

record).  These steps resulted in 9,934,191 records for Atlanta. 

- For each truck, examine the current record and the next record to determine if it 

is stopped, just starting to move, in motion, or coming to a stop.  This was 



85 
 

complicated by the fact that the GPS pings did not occur on a consistent time 

schedule, but apparently at random times. 

- Very short movements that didn’t leave a zone were considered to be either local 

drayage or bad data and were ignored. 

- Many inconsistencies were noted between the Start/End locations and the time 

stamps (e.g., a truck moved from one zone to another, but no time elapsed).  

These were handled by examining preceding and following records to establish a 

reasonable sequence of events. 

- The Start/End times were compared to the distances to get a speed for each 

record.  Generally, if the speed was less than 3 mph, the truck was considered 

stopped.  Records with extremely high speeds were also dropped since these 

probably reflect incorrect geocoding. 

- A “tour” was considered to consist of all of the movements from a Start location 

(zone) until the truck returned to that same location (zone), or midnight of that 

day, whichever occurred first.  (Multi-day tours were not considered.) 

- The study team provided ATRI with a set of polygons that approximately 

represented each external station, to permit the geocoding of external locations  

- Some trucks were represented only once in the entire file; others appeared on 

several different days.  Some trucks were represented in more than one month’s 

data.  All correct observations were used; no attempt was made to prevent a 

truck from appearing more than once. An effort was made to factor the entire 

database to represent one “average” day, but this did not prove to be productive. 
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Table 9 and Table 10 presents the basic total tour statistics. 

Table 9: Tour Statistics for Atlanta 

 
Tours Stops Stops/Tour 

I/I 111,424 333,899 3.00 

I/X 25,751 39,990 1.55 

X/I 50,845 69,858 1.37 

X/X 32,732 48,802 1.49 

Total 220,752 492,549 2.23 

 

Table 10: Tour Statistics for Birmingham 

 
Tours Stops Stops/Tour 

I/I 26,606 60,069 2.26 

I/X 11,662 11,584 0.99 

X/I 22,629 21,343 0.94 

X/X 25,936 26,177 1.01 

Total 86,833 119,173 1.37 

 

It seems logical that internal tours would have more stops than external tours.  There are 

almost exactly twice as many X/I tours as I/X tours, which seems reasonable given the 

economic strength of the Atlanta and Birmingham areas and the fact that each has the 

largest concentration of economic activity in its State.  The overall share of X/X trips at 

the cordon is 46% (X/X trips cross the cordon twice) for Atlanta and 43.1% for 

Birmingham, which are not too different from the 56% share found by PBQ&D in a 2008 

analysis of heavy truck travel (Donnelly et al., 2008).  Note that the definition of X/X 

travel here is different from the usual definition.  Here, a trip is considered X/X if it starts 

and ends outside the region, even if it made a stop within the region. 
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GPS truck data provided by ATRI includes the following attributes: 

 Truckid:    This is a unique truck ID. 

 Parking_from:   This indicates if the vehicle is in a known truck stop at the  
   first point:  1 = at a truck stop, 0 = not at a truck stop 

 Readdate_from:   This is the first date/time stamp in a series 

 TAZ_2000_from:   This is the TAZ ID for the first position read in a series. 

 To_readdate:    This is the second time stamp in a series 

 To_TAZ_2000:   This is the second TAZ ID in a series 

 To_Parking:   This indicates if the vehicle is in a known truck stop at the  
   second point:  1 = at a truck stop, 0 = not at a truck stop 

 Distance traveled:   This is distance traveled in miles from point A to point B.  
It uses the great circle distance equation  

    (i.e. it is not snapped to a roadway). 
 
In order to illustrate how truck records have been processed to turn into trip and tour 

records, one unique truck (Truck ID: 0014827042235482023992) was selected.  A part 

of the cleaned truck records of the selected truck is shown in Figure 15. Full records are 

placed in Appendix.  After clean up processing, there remained 224 cleaned truck 

records. 

 
A FoxPro program was used to process truck GPS data. The ATRI data comes from 4 

months in 2011: February, May, July, and October.  Only the dates in each month that 

were weekdays were identified only, and weekends and national holidays were deleted: 

Presidents Day (2/21), Memorial Day (5/30), Independence Day (7/4), and Columbus 

Day (10/10).  All 8 sets of input files were concatenated for processing.  Some GPS 

records span a multi-day period. If the records closely span midnight over 2 consecutive 

days, those were included, otherwise deleted, because we do not know what really 

happened to the truck during the time period. From given distance and calculated time 

between origin and destination in each record, speed was calculated in mph.    

 
In order to convert truck records into trip records, four STATUS categories were defined 

as truck's activity: F = first record, D = trip departure, A = trip arrival, L = last record. We 
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are trying here to figure out when the truck is stopped and when it is moving.  We also 

need to know where it is when it starts moving (from the origin) and when it stops 

moving (at the destination). If the record is the first record for this truck and the speed < 

2 mph, we set a logical variable ‘STOPPED’ to True and the value for the column 

‘STATUS’ is replaced with 'F'.  When the truck is starting to move, this was considered 

as a Departure record (STATUS = ‘D’).  If the truck is not "stopped" and the speed is 

larger than 3 mph, it was considered as moving. Arrival (STATUS = ‘A’) and last records 

(STATUS = ‘L’) were also identified by observing truck movements.  

 

 

Figure 15:  A Part of Truck Records of Truck ID 0014827042235482023992 

 

Based on the STATUS variable, the cleaned truck records were turned into trip records 

which must have legitimate origin and destination zone information.  The example above 

shows an example of the trip records for the selected truck (Truck ID: 

0014827042235482023992) containing 23 truck trips generated out of 224 truck records. 
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Figure 16:  Trip Records of Truck ID 0014827042235482023992 

 

A second FoxPro program was used to convert the trip records into tours.  This program 

reads records until it finds one that is a different truck or a different day, or the origin is 

not equal to the previous destination and stores the location of each stop.     

 

Figure 17 show an example of the selected truck’s tours. Tour 1 starts from zone 401 

and ends at zone 1440 taking seven intermediate stops during the tour at zones 1440, 

139, 143, 2057, 2077, 143, and 881 on Feb. 16, 2011 (Figure 18 (A)).  Tour 2 starts from 

zone 1440 and ends at zone 410 taking seven intermediate stops during the tour at 

zones 434, 1678, 1085, 1891, 143, 139, and 432 on Feb. 17, 2011 (Figure 18 (B)).  Tour 

3 starts from zone 143 and returns to the same zone after taking six intermediate stops 

TRUCKID TRIP ORIG DEST STARTTIM ENDTIM STARTDAY ENDDAY TTIME WEIGHT

0014827042235482023992 1 401 1440 0.1511 0.8281 16 16 0.6770 0.0526

0014827042235482023992 2 1440 139 8.1831 8.9317 16 16 0.7486 0.0526

0014827042235482023992 4 139 143 9.1428 9.1958 16 16 0.0530 0.0526

0014827042235482023992 5 143 2057 10.2092 11.5389 16 16 1.3297 0.0526

0014827042235482023992 6 2057 2077 12.7664 16.0878 16 16 3.3214 0.0526

0014827042235482023992 7 2077 143 16.5136 18.1831 16 16 1.6695 0.0526

0014827042235482023992 8 143 881 18.7583 19.4053 16 16 0.6470 0.0526

0014827042235482023992 9 881 1440 19.6050 19.8092 16 16 0.2042 0.0526

0014827042235482023992 10 1440 434 13.7839 14.4539 17 17 0.6700 0.0526

0014827042235482023992 11 434 1678 14.5969 15.2872 17 17 0.6903 0.0526

0014827042235482023992 12 1678 1085 15.4139 15.8242 17 17 0.4103 0.0526

0014827042235482023992 13 1085 1891 16.6300 17.2433 17 17 0.6133 0.0526

0014827042235482023992 14 1891 143 20.1175 21.3272 17 17 1.2097 0.0526

0014827042235482023992 15 143 139 21.5153 21.8633 17 17 0.3480 0.0526

0014827042235482023992 16 139 432 22.1658 23.1906 17 17 1.0248 0.0526

0014827042235482023992 17 432 410 23.3414 23.3761 17 17 0.0347 0.0526

0014827042235482023992 18 143 1440 0.4756 1.3042 18 18 0.8286 0.0526

0014827042235482023992 20 1440 344 11.5547 11.9069 18 18 0.3522 0.0526

0014827042235482023992 21 344 2034 12.4506 13.9633 18 18 1.5127 0.0526

0014827042235482023992 22 2034 2033 17.8239 18.1881 18 18 0.3642 0.0526

0014827042235482023992 23 2033 882 18.9717 21.4567 18 18 2.4850 0.0526

0014827042235482023992 24 882 1440 21.7108 21.8264 18 18 0.1156 0.0526

0014827042235482023992 25 1440 143 23.3469 23.9867 18 18 0.6398 0.0526
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during the tour at zones 1440, 344, 2034, 2033, 882, and 1440 on Feb. 18, 2011 (Figure 

18 (C)).  Overall, this GPS sample shows that the selected truck contained 224 cleaned 

truck records and those records were turned into 23 trips making up three tours 

(determined through this study) during the period of Feb. 16~18, 2011 (Figure 18 (D)). 

 

 

Figure 17:  Tour Records of Truck ID 0014827042235482023992 

 

 

 

 

 

TRUCKID TORIG TDEST TSTART TEND TDAY TRIPS WEIGHT STOP01 STOP02 STOP03 STOP04 STOP05 STOP06 STOP07 STOP08

0014570242191033477538 2055 1329 19.6200 20.9797 8 3 0.0526 410 434 0 0 0 0 0 0

0014570242191033477538 2061 1329 18.4717 20.1506 9 2 0.0526 434 0 0 0 0 0 0 0

0014570242191033477538 1329 434 9.5656 10.1239 10 3 0.0526 434 2057 0 0 0 0 0 0

0014570242191033477538 2057 1329 18.9950 20.1333 11 3 0.0526 434 432 0 0 0 0 0 0

00147704916385437 2100 1348 21.0561 22.9272 16 1 0.0526 0 0 0 0 0 0 0 0

0014827042235482023992 401 1440 0.1511 0.8281 16 8 0.0526 1440 139 143 2057 2077 143 881 0

0014827042235482023992 1440 410 13.7839 14.4539 17 8 0.0526 434 1678 1085 1891 143 139 432 0

0014827042235482023992 143 143 0.4756 1.3042 18 7 0.0526 1440 344 2034 2033 882 1440 0 0

00150423475485122051 969 361 0.9625 1.6681 7 2 0.0526 2057 0 0 0 0 0 0 0

0015187328240287071808264058 614 2077 4.0828 4.1133 14 1 0.0526 0 0 0 0 0 0 0 0

0015187328240287071808264058 2077 1741 0.2478 2.2569 15 1 0.0526 0 0 0 0 0 0 0 0

00155700409164502427 1695 2100 20.5694 20.9350 16 2 0.0526 1687 0 0 0 0 0 0 0

001561246644499641161493682 343 2090 12.6658 13.3475 10 3 0.0526 428 1351 0 0 0 0 0 0

001561246644499641161493682 2077 1687 12.3353 15.1522 11 3 0.0526 1904 1704 0 0 0 0 0 0
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Figure 18:  Tours of Truck ID 0014827042235482023992 during Feb. 16~18, 2011 

 

Tour Statistics: Atlanta  

Some of the tour statistics for the Atlanta metropolitan area are summarized here and 

those for the Birmingham area are included in the Appendix. 

Number of Tour Starts by TAZ 

Figure 19 shows the number of tours starting from the Atlanta TAZs and external 

stations, showing where the truck tours are mostly generated. There is a clear pattern of 

external truck tours being generated in the TAZs and external stations along the 

interstate highway, which is also consistent WITH the locations of the region’s 
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distribution centers. There are some TAZs that have an extremely high number of truck 

tours. These TAZs are identified as “truck zones” in the model due to their high truck tour 

generation rate, related employment, and abundant distribution center facilities.  

 

 

Figure 19. Number of Truck Tours Starting from the TAZs and External Stations - Atlanta 

 

Number of Tour Ends by TAZ 

As a comparison, Figure 20 shows the number of truck tours ending in all the TAZs and 

external stations, showing those locations that attract most of the truck tours. Similarly, 

the TAZs and external stations that attract most of the truck tours also fall close to the 
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interstate highways and truck zones that often have both high numbers of tour starts and 

tour ends. 

 

Figure 20. Number of Truck Tours Ending in the TAZs and External Stations - Atlanta 

 

Number of Intermediate Stops by TAZ 

Figure 21 shows the number of intermediate stops made in the TAZs and external 

stations. Compared with the number of tour starts and number of tour ends in the TAZs, 

the number of intermediate stops are more distributed across the TAZs. The 

intermediate stops reflect the distribution channels that are used by the truck tours, 

which is a significant characteristic of tour-based freight modeling compared to trip-

based modeling. A truck tour, going from the origin TAZ to the destination TAZ, may not 
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follow the shortest path between the two, but will likely cover specific intermediate stops 

in between. This reflects the trip-chaining nature of truck tours. It is also plausible that 

most of the external stations do not have many intermediate stops, as shown in the 

figure. 

 

Figure 21.  Number of Intermediate Stops made in all the TAZs and External Stations - Atlanta 

 

Start Time Distribution 

As mentioned previously, modeling the time of day when the truck tours start is an 

important feature of this model, because truck trips do not follow the same distribution of 

start time as passenger trips. Figure 22 shows the distribution of the start time of truck 

tours in the Atlanta metropolitan area in a 24 hour time scheme. The peak period for 
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truck tour starts is between 9am to 12am, which is about 3 hour behind the traditional 

morning commute-dominated “peak hour”, which is often defined as 6am to 9am. There 

is also a noticeable peak around midnight, which might be caused by the way that a 

“tour” is defined in the model (since a “tour” was considered to end when the truck 

returns to the start location, or midnight of that day, whichever occurs first). It means that 

any tour passing midnight will be considered as a new tour, which may result in the 

greater number of tours generated during midnight, as shown in the following figure. 

However, even if the actual number of tour generations during midnight is only half of the 

number shown in the figure, it still forms a peak, indicating the relative importance of 

truck movements during night time. The difference between the peak of truck tours and 

normal passenger trips is quite obvious, which is another reason why freight demand 

modeling is in need.  

 

Figure 22. The Distribution of the Start Time of Truck Tours in Atlanta Metro Area 
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End Time Distribution 

As with as the distribution of truck tour start times, the distribution of truck tour end times  

also follow two peaks, one in the midday around 10am to 1pm and the other around 

midnight, as shown in Figure 23.  These peaks occur about one hour after the start time 

peaks. 

 

Figure 23. The Distribution of the End Time of Truck Tours in Atlanta Metro Are 

 

Socio-economic data from MPOs  

Each metropolitan planning organization provided a series of data for variables that it 

uses in its travel demand model.  These socio-economic variables were available at the 

level of the traffic analysis zone (TAZ).  They include variables such as employment size 

and type, population size, and land areas. 

Review MPO employment breakdown by TAZ 

The tour-based model requires socio-economic data at the traffic analysis zone (TAZ).  

However, most data sources conform to U.S. Census Bureau geographic boundaries, 
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such as the census tract, rather than TAZs.  Therefore, the research team converted 

data from the census tract level to TAZs with the following steps. 

1) Gather census tract level data.  The research team downloaded data variables 

from the Longitudinal Employer–Household Dynamics data through the U.S. 

Census Bureau website and at the block level.  The research team aggregated 

all block groups in each census tract for Residence Area Characteristic (RAC) 

and Workplace Area Characteristic (WAC) data.  

2) Prepare the Census Tract Shapefile.  The research team downloaded the 

census tract shapefile from Tiger Product (http://www.census.gov/geo/maps-

data/data/tiger.html).  Then the team joined the socio-economic data to the 

census tract shapefile in ArcGIS according to the census tract ID, and calculated 

the census tract area with the “calculate geometry” tool in ArcGIS.  This allowed 

the team to determine the proportion of the TAZ composed of each census tract.  

Then, the research team used the intersect tool on the census tract and TAZ 

shapefiles.  This breaks each area belonging to a unique census tract and TAZ 

into an individual shape.  The team created a new column in the shapefile table 

attributes and used the “calculate geometry” function to calculate each polygon’s 

area.   

3) Scale the Variables.  The team created one more column and calculated its 

values to be the ratio of the polygons’ area over the census tract’s total area.  

This ratio would scale the census tract-level values to a lower scale.  The team 

multiplied the census tract-level values by the ratio. 

4) Aggregate Variables at the TAZ Level.  The research team used the ArcGIS 

“dissolve” function to aggregate the variables for each polygon for each TAZ.  

These TAZ-level variables served as model inputs 

http://www.census.gov/geo/maps-data/data/tiger.html
http://www.census.gov/geo/maps-data/data/tiger.html
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Vehicle Classification Counts  

The traffic counts that are collected from the permanent and portable traffic collection 

devices (Automatic Traffic Recorders: ATRs which are installed under the surface of the 

roadway to count traffic 24/7, 365 days a year) are used in the calculation of the Annual 

Average Daily Traffic (AADT) estimates. Figure 24 shows the locations of ATRs in the 

Atlanta modeling area. In order to adjust short-term traffic counts collected from ATRs, 

traffic factors are used in the calculation of Average Annual Daily Traffic (AADT). 

AADT = 24-hour Short Term Volume * Daily Adjustment Factor * Monthly 

Adjustment Factor * Axle Adjustment Factor   

GDOT’s Office of Transportation Data provided vehicle classification count datasets 

which takes into account the 16 vehicle classification definitions used by the Federal 

Highway Administration.  These datasets are available online under the following 

location: 

http://www.dot.ga.gov/informationcenter/statistics/TrafficData/Pages/default.aspx 

An example of vehicle classification count is illustrated in Table 11. 

  

http://www.dot.ga.gov/informationcenter/statistics/TrafficData/Pages/default.aspx
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Table 11:  Vehicle Classification Count Data 

Column Heading Description County 
 CTYNAME Name of County APPLING APPLING 

CTY Ignore or delete this field 1 1 

CTYFIPS 
3-digit FIPS code for GA 
Counties 001 001 

TC Traffic Counter # 0183 0183 

RT Route Type 1 1 

FC Functional Class 06 06 

BEGDATE Date of Collection 1/3/2012 1/3/2012 

DoW Day of Week Tue Tue 

DIR Direction N S 

Cycles Class 1 0 1 

Cars Class 2 235 217 

SUV/Pkups Class 3 113 123 

Bus Class 4 3 3 

2-Axle Class 5 20 21 

3-Axle Class 6  3 8 

4-Axle Class 7  0 0 

3/4-Single Class 8 5 10 

5-Single Class 9 48 44 

6-Single Class 10 0 2 

5-Multi Class 11 0 0 

6-Multi Class 12 0 0 

7-Multi Class 13 0 2 

8-Multi Class 14 0 0 

UnClass Class 15 (Cannot be Classified) 0 0 

TOTVOL Total # of Vehicles 427 431 

TRUCKS Total # of Trucks 79 90 
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Figure 24:  Automatic Traffic Recorders Locations within Atlanta Modeling Area 

It is useful for models to distinguish among as many relevant categories of vehicles as 

possible to account for the fact that different commercial vehicle categories may have 

different trip-making characteristics.  However, it was not possible to incorporate 

different commercial vehicle categories because the GPS location data does not 

distinguish among vehicle types. Due to this, 2010 truck percentages by location (Table 
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12) was used instead of vehicle classification by functional class for truck volume 

assignment validation purposes, as described later in this report. 

Table 12:  Automatic Traffic Recorders Locations and Truck Percentages & Volumes 

County TC Estimated 

AWDT 

Truck 

Volume 

Truck 

Percent 

LOCATION 

BARROW 0036 9284 530 0.057 CR415:2.3 mi East of SR8/53  

BARTOW 0118 47619 3380 0.071 SR3/US41, Cartersville: bn Grassdale Rd. & SR 61  

BARTOW 0178 10593 1050 0.099 SR61:bn SR20 (Canton Hwy) & I-75  

BARTOW 0276 74789 21690 0.290 I-75:just above SR20  

CHEROKEE 0341 3652 130 0.035 CR398/Wiley Bridge Rd:N of SR92  

CLAYTON 0005 43648 2010 0.046 SR3/Tara Blvd:bn McDonough/SR92 & Cardinal/CR798  

CLAYTON 0096 36212 1340 0.037 SR85:bn Flint River Rd/CR449 & SR138  

CLAYTON 0383 6402 190 0.030 CR501/Thomas Rd:bn Flint River & SR54  

CLAYTON 1023 73029 2780 0.038 SR3/Tara Blvd:@Sherwood Forest cemetery SB  

CLAYTON 1032 19822 1210 0.061 Old Dixie Hwy/SR3:bn Morrow Rd & Forest Pkwy  

CLAYTON 1085 22594 860 0.038 Jonesboro Rd/SR54:1st light S of F.Pkwy on SR54  

CLAYTON 1172 19657 1260 0.064 Forest Pkwy:in front of City Hall  

CLAYTON 1192 190267 18460 0.097 I-75:bn 19/41 & Forest Pkwy/Farmer Market exit  

CLAYTON 1194 224169 22640 0.101 I-75:bn Forest Pkwy SR331 & I-285  

CLAYTON 1201 141108 22580 0.160 I-285:bn Clayton/Fulton Co. Line & I-75  

COBB 0774 79948 4800 0.060 I-575/SR417:bn I75 & SR5/Cnctr Ernest Barrett Pkwy  

COBB 0781 91982 4780 0.052 I-575/SR417:bn .8 miles S of SR92  

COBB 2141 38434 1420 0.037 Cobb Pkwy/Sr-3/US41:S of Franklin Rd  

COBB 2334 3949 120 0.030 CR4516/Powder Sprngs Dallas:bn Finch & Warren Farm  

COBB 2373 157575 23640 0.150 I-285:@Orchard Rd  

COBB 2607 30943 1140 0.037 SR280:bn Cooper Lake/CR1892 & King Spring/CR1891  

COBB 2623 30030 1290 0.043 S. Cobb Dr/SR280:@Dobbins AFB, S of Ridenour Rd 

COBB 2738 309078 33070 0.107 SR401(I-75): btwn Windy Hill and Delk Rd  

DEKALB 0314 144463 15460 0.107 I-20 EB @ Fairington Rd Overpass  

DEKALB 0644 18018 670 0.037 Chamblee Tucker Rd/CS075705:near SR13  

DEKALB 0927 82291 12100 0.147 DEKALB 0927 I-675:bn Clayton/Dekalb Co line & I-285  

DEKALB 3047 38258 1110 0.029 DEKALB 3047 SR10:bn Rockbridge Rd & Rays Rd  
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County TC Estimated 

AWDT 

Truck 

Volume 

Truck 

Percent 

LOCATION 

DEKALB 3236 26400 530 0.020 DEKALB 3236 SR155:bn N. Druid Hills & Lavista Rd  

DEKALB 3323 232881 9780 0.042 DEKALB 3323 I-85:@North Druid Hills Rd  

DEKALB 3332 237028 11140 0.047 DEKALB 3332 SR403 (I-85): btwn Chamblee Tucker and 

SR407 (I-285) 

DEKALB 3341 163075 24460 0.150 DEKALB 3341 I-285/SR407:bn Bouldercrest Rd & I-675  

DEKALB 3363 217866 22440 0.103 DEKALB 3363 I-285: NB @Henderson Mill Rd.  

DEKALB 3374 231814 22950 0.099 DEKALB 3374 I-285:@Shallowford Rd  

DEKALB 3385 118855 5350 0.045 DEKALB 3385 SR410/Stone Mtn Freeway:bn I-285 & Brocket 

Rd CR5152  

DEKALB 3438 12540 410 0.033 DEKALB 3438 Chamblee/Dunwoody Rd/CR5156:@Colt Dr  

DEKALB 3572 6655 180 0.027 DEKALB 3572 Dunwoody Club Rd/CR5178:Mt Vernon & 

Winters Chapel  

DEKALB 3638 24937 820 0.033 DEKALB 3638 Pleasantdale Rd/CR5182:bn Lynray & Pleasant 

Shade  

DOUGLAS 0107 75592 14820 0.196 DOUGLAS 0107 I-20 between SR 939 (Liberty Road) and Post 

Road  

FAYETTE 0316 6798 140 0.020 FAYETTE 0316 CS 30407:Robinson Rd S of Wingate  

FORSYTH 0059 5368 300 0.055 FORSYTH 0059 CR741/Bannister Rd:S of SR9 Dahlonega 

Hwy 

FULTON 0178 11220 1500 0.134 FULTON 0178 SR14:S of Fairburn City Limits  

FULTON 0190 17622 920 0.052 FULTON 0190 SR14/US29:@Lumber yard  

FULTON 0458 147532 5900 0.040 FULTON 0458 SR 400 N of Mansell Rd  

FULTON 0516 152570 18310 0.120 FULTON 0516 I-85:bn Flat Shoals Rd & I-285 MP 66.95  

FULTON 0795 53460 1500 0.028 FULTON 0795 SR92/Wdstock Rd:W of Mt Park/Bowen Rd near 

Cobb CL, Fulton Co.  

FULTON 0863 18183 380 0.021 FULTON 0863 SR961/Old AL Rd:bn SR140/Holcomb Brdg & 

Old AL Rd  

FULTON 0989 5720 150 0.026 FULTON 0989 W Wesley Rd/CS000603:bn Moores Mill & 

Dawn View Ln  

FULTON 5016 26554 740 0.028 FULTON 5016 SR3/Northside Dr: bn Marietta St & 14 St  

FULTON 5108 40293 1090 0.027 FULTON 5108 Peachtree Rd/SR9:bn Collier Rd & Terrace Dr  
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County TC Estimated 

AWDT 

Truck 

Volume 

Truck 

Percent 

LOCATION 

FULTON 5110 36333 840 0.023 FULTON 5110 SR9/Roswell Rd:bn Peachtree Rd & Lakeview 

Dr  

FULTON 5114 31471 690 0.022 FULTON 5114 Roswell Rd/SR9:bn Piedmont Rd & Long Island 

Dr  

FULTON 5225 24882 1490 0.060 FULTON 5225 Moreland Av/SR42:bn McDonough Rd & Custer  

FULTON 5374 11583 360 0.031 FULTON 5374 Cascade Rd/CR4176:bn New Hope Rd & 

Danforth Rd  

FULTON 5450 125345 2260 0.018 FULTON 5450 SR400:South of Johnson Ferry overpass  

FULTON 5452 201696 7060 0.035 FULTON 5452 SR400:N of Johnson Ferry bn Abernathy & I-

285  

FULTON 5463 170819 11620 0.068 FULTON 5463 I-75:bn Fulton Co Line & Cleveland Av  

FULTON 5474 318065 16220 0.051 FULTON 5474 I-75/I-85 at Grady Curve  

FULTON 5486 218240 10040 0.046 FULTON 5486 I-75:@Northside Dr  

FULTON 5505 172326 9480 0.055 FULTON 5505 I-20:bn McDaniel St & Windsor St  

FULTON 5508 193919 9500 0.049 FULTON 5508 I-20:@Capitol Av  

FULTON 5524 143561 5020 0.035 FULTON 5524 I-85:bn Sylvan Rd & Cleveland Av  

FULTON 5534 147653 27320 0.185 FULTON 5534 I-285:bn I-85 & Washington Rd CR1389  

FULTON 5542 166452 26470 0.159 FULTON 5542 I-285:bn I-20 & SR8  

FULTON 5555 138468 22710 0.164 FULTON 5555 I-285:@Forest Park Rd  

FULTON 5633 12628 480 0.038 FULTON 5633 SR9/US19/14th St:1 block N of N-side Dr 

@Macmillan  

FULTON 5969 255717 9720 0.038 FULTON 5969 I-85:bn Northbound & SR400 Northbound  

FULTON 6370 192280 7690 0.040 I-75:@Chattahoochee River  

GWINNETT 0241 96646 7250 0.075 SR 316: 1.1 Mile W of Sugarloaf Pkwy  

GWINNETT 0267 62755 6650 0.106 SR419/I-985:bn I-85 & SR20 Buford Dr  

GWINNETT 0298 165550 23180 0.140 I-85 BTWN SR316 & SR120  

GWINNETT 0305 160336 23090 0.144 I-85NB:btwn Lawrenceville-Suwanee Rd and I-85/I985 split  

GWINNETT 0307 102630 16630 0.162 I-85:btwn I-85/I-985 and Suwanee-SR20 (N of split)  

GWINNETT 0563 17633 620 0.035 Lenora Church Rd:bn E.Park & Dorian Rd  

HALL 0183 14388 940 0.065 SR13:@Southern Railroad  

HALL 0514 2706 120 0.046 CR186/Elrod Rd:E of SR136  



104 
 

County TC Estimated 

AWDT 

Truck 

Volume 

Truck 

Percent 

LOCATION 

HALL 0532 4719 240 0.051 White Sulphur Rd:bn Jesse Jewel Pkwy & Beverly  

HALL 0587 5962 290 0.048 Industrial Blvd:bn Hall & Mtn Crest  

HENRY 0412 159676 24110 0.151 I-75:bn I-675 & Hudson Bridge Rd  

HENRY 0446 49445 8410 0.170 I-675:bn I-75 & Clayton Co Line  

NEWTON 0218 47707 9730 0.204 I-20:1 mi West of Social Cir Exit  

SPALDING 0373 12133 1580 0.130 SR-16 btwn S. McDonough Rd & High Falls Rd  

WALTON 0018 21384 1560 0.073 SR10:bn Youth Monroe Rd & SR10BU Alcovy River  
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Model Development: Atlanta, GA and Birmingham, AL  
 

Framework Transfer 

The Birmingham model was to be developed in almost exactly the same way as the 

Atlanta model.  The same truck GPS data was obtained from ATRI and processed in a 

manner that was parallel to the Atlanta approach.  The key differences include: 

- In Atlanta, the GPS data was assumed to represent medium and heavy trucks.  ARC 

previously had validated MTK and HTK models, and these were consulted to provide 

target values.  After the Atlanta model was completed, ATRI clarified that its GPS data 

actually represents mostly heavy trucks – 89% are class 8 and above.  Birmingham did 

not have existing models for both MTK and HTK.  Although two sets of truck count data 

were available, there was no documentation on which count represented which type of 

vehicle.  The research team assumed that one of the count types represented HTK.  

Also, it was not clear that the Birmingham region required separate estimates of MTK 

trips.  Thus, the decision was made to model only HTK in Birmingham. 

- Since the Atlanta model was completed first, the Birmingham model was able to benefit 

from that experience.  Certain assumptions regarding model structure and parameter 

values were changed from the Atlanta version, as a result of increased knowledge 

gained from that work. 

- The nature of truck traffic is different in Birmingham.  A key difference is that the share 

of external and through trucks (as a proportion of total truck traffic) is much higher in 

Birmingham than in Atlanta, probably due to the different size of the manufacturing base 

of the two areas. 
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- Alabama DOT provided a sufficient number of daily truck counts.  The consulting team 

also requested truck counts by hour or time period, but those were not provided.  

Although a time of day model was calibrated, it could not be validated. 

As the truck tour model was being developed, the Regional Planning Commission of 

Greater Birmingham (RPCGB) was in the process of changing its traffic analysis zone 

(TAZ) system.  The old system had 999 internal TAZs and external stations, while the 

new one has 1,986.  Since the ATRI GPS data was geocoded to the old TAZs, that 

system was used for model calibration. 

 

Tour Generation 

 

i. Model Structure 

Conventional trip-based models measure travel in terms of independent trips between 

pairs of zones.  This approach ignores the relationship between trips that may be 

segments of a tour.  Analyses of personal travel indicate that multi-stop tours make up 

fewer than 20% of all tours.  But for commercial travel, it seems likely that multi-stop 

tours are a higher share of total travel.  While some truck tours are obviously “simple” 

tours (pick up something one place, drop it another), many trucks make multiple stops to 

deliver goods (e.g., UPS/FedEx, “route” drivers, such as those who deliver foodstuffs to 

grocery stores and restaurants).  So it seems probable that modelling tours is more 

important and complex for trucks than for personal travel. 

The original specification for a tour-based truck model included a true disaggregate tour 

generation step.  The model considers each individual truck and models the probability 

of it making 0, 1, 2, tours per day.  However, in order to apply this kind of model, this 
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approach requires an inventory of all trucks in the region.  This was investigated and 

found to be infeasible, at least within the resources available to the present project.  

Therefore, a true disaggregate tour generation model could not be developed. 

Instead, a zonal aggregate model of the number of tour starts was developed.  This 

includes all tours: those that stay within the region (I/I), those that start in the region and 

leave it (I/X), and those that start outside the region and end inside (X/I). 

ii. Available Model Data 

ARC has developed a considerable amount of data to support application of its travel 

models.  The principal file is the socioeconomic and land use data by zone.  This 

includes the following variables for each zone: employment by 8 categories 

(construction, manufacturing, transportation/communications/ utilities [TCU], wholesale, 

retail, finance/insurance/real estate [FIRE], service, government), population, 

households, university enrollment, acres.  In addition, the ARC model includes a 

submodel that computes the area type for each zone.  This is a zonal variable that 

ranges from 1 (CBD) to 7 (rural) on the basis of the population and employment density 

in the subject zone and all other zones whose centroids are within 1 mile (straight line 

distance) of the subject zone.  This so-called “floating zone method” provides a 

smoother transition between area types.  The model is shown in Table 13. 
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Table 13: Atlanta Area Type Model 

Pop Density Employment Density (jobs/acre) 

(persons/acre) <0.05 0.06-0.32 0.33-6.65 6.66-12.44 12.45-25.10 25.11-57.97 >  57.97 

< 0.43 7 7 6 4 4 3 2 

0.44-0.78 7 6 6 4 3 3 2 

0.79-2.38 7 6 5 4 3 2 2 

2.39-3.48 6 5 5 4 3 2 2 

3.49-5.40 6 5 5 4 3 2 1 

5.41-8.07 5 5 5 3 3 2 1 

> 8.07 5 5 5 3 2 2 1 

 

RPCGB also has developed a considerable amount of data to support application of its 

travel models.  The principal file is the socioeconomic and land use data by zone.  This 

includes the following variables for each zone: housing units, population, total 

employment, retail employment, and school enrollment.  Generally, a two-way split of 

employment (retail/non-retail) is not sufficiently detailed to identify truck travel patterns.  

A more robust truck model requires greater differentiation of employment at the zone 

level.  The minimum disaggregation is: industrial, retail, office, and other.  This data was 

not available from RPCGB. 

Fortunately, the Census Bureau has a program called Longitudinal Employer-Household 

Dynamics (LEHD) which provides a breakdown of existing employment by 20 NAICS 

groups at the census block level.  The research team obtained this data and converted it 

to the RPC’s (old) zone system.  The different categories of employment were then 

aggregated to produce industrial, retail, office, and other breakdowns.             Table 14 

shows the equivalency. 
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           Table 14:  Employment Category Equivalency 

Model 
Category 

NAICS Code NAICS Category 

Industrial 

11 agriculture 

21 mining 

22 utilities 

23 construction 

31-33 manufacturing 

42 wholesale 

48-49 transportation, warehousing 

Retail 44 retail 

Office (service) 

51 information 

52 finance/insurance 

53 real estate 

54 professional/technical/scientific 

55 management 

56 administrative 

92 government 

Other 

61 educational 

62 health care 

71 entertainment/recreation 

72 hotel/food 

81 other services 

 

The current LEHD data provided TAZ-level percentages which were then used to 

disaggregate the RPCGB non-retail employment by industrial, office, and other 

categories.  The information will not be forecast– for the present project the LEHD’s 

percentages are assumed to apply in the future as well. 

In addition, the RPCGB model includes a sub-model that calculates the area type for 

each zone.  This is a zonal variable that ranges from 1 (CBD) to 9 (rural), computed on 

the basis of the combined population and employment density in the subject zone and all 

other zones whose centroids are within 1 mile (straight line distance) of the subject zone.  

This so-called “floating zone method” provides a smoother transition between area 

types. The model is shown in Table 15. 
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Table 15:  Birmingham Area Type Model 

Combined Density 
(pop+emp/acre) 

Area 
Type 

> 20 1 

15 – 20 2 

12 – 15 3 

8 – 12 4 

5 – 8 5 

1 – 5 6 

0.5 – 1 7 

0.25 – 0.50 8 

< 0.25 9 

 

 

The final zonal variable is a “truck zone flag”.  This is a binary (0/1) variable that takes 

the value of 1 for zones that have been designated as a “truck zone”.  These are zones 

that contain land uses that are likely to generate a higher than average number of truck 

trips per employee.  Examples include industrial parks, warehousing areas, truck stops, 

quarries, intermodal terminals, etc.  These were identified by examining satellite photos 

and checked by ARC staff and members of the ARC Freight Committee.  About 46 such 

zones were identified throughout the region, as shown in Figure 25. 
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Figure 25: Atlanta Truck Zones 

(Source: The Travel Forecasting Set for the Atlanta Region, 2008 Documentation, PBS&J, 
October 2010.) 

 

Birmingham truck zones were also identified by examining satellite photos that were also 

reviewed by local staff.  Some zones that might seem like good candidates for truck 

zones were not included, since they contained a relatively large number of employees, 

which would be expected to generate a commensurate number of truck trips.  The 

initially proposed list of truck zones was reduced slightly as part of the assignment 

validation process, as it was discovered that some zones did not need the extra boost in 

trips.  The final list is shown in Table 16.   
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Table 16: Birmingham Truck Zones 

Truck Zone ID Land Use 

161 industrial 

163 intermodal terminal 

176 airport 

202 manufacturing 

207 manufacturing 

395 manufacturing 

396 warehousing, US Steel 

478 warehousing 

498 industrial 

623 intermodal 

627 warehousing 

628 manufacturing 

664 quarry 

667 intermodal, warehousing 

740 manufacturing 

750 industrial park 

774 airport, manufacturing 



113 
 

 

 

Figure 26:  Birmingham Truck Zones 

iii. Generated Data 

The input data already available for the ARC model can be used to calculate a number 

of other statistics that might be relevant to the generation of truck tours, based on other 

such models and common sense.  Variables that could not be readily forecast were not 

included in the model.  ARC and RPCGB provide forecasts of the model data listed 

above.  Other variables can also be generated from that data, which can also be easily 

forecast from the basic ARC and RPCGB data.  These variables are as follows:  

- Accessibility 

This refers to the ability of people in a zone to get to jobs and houses.  It reflects 
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both development density and the proximity of the roadway network.  Typically, it 

is computed for each zone.  There are many ways to measure accessibility and 

several candidate measures were developed for possible use in model 

calibration: 

o ACCH15: the number of households that can be reached within 15 

minutes’ travel time (over the road network) from this zone (off-peak 

network) 

o ACCH30: the number of households that can be reached within 30 

minutes 

o ACCE15: the number of jobs that can be reached within 15 minutes 

o ACCE30: the number of households that can be reached within 30 

minutes 

o ACCI15: the number of industrial jobs that can be reached within 15 

minutes; the hypothesis is that industrial employment (the sum of 

construction, manufacturing, TCU, and wholesale) is more closely related 

to truck traffic than is total employment 

o ACCI30: the number of industrial jobs that can be reached within 30 

minutes 

o ACCHH: the above measures are easy to understand, but they include a 

“cliff”.  For example, for ACCE30, the jobs in a zone that is 29.8 min away 

would be included but the jobs in the next zone over that is 30.3 min away 

would be excluded.  This might not always be desirable.  The ACCHH 

variable solves this problem by using a continuous function.  It is 

computed for each zone as the sum of households for all zones divided 

by travel time (TT) squared.  So this measure includes every zone in the 

region, but zones that are very distant from the subject zone don’t 
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contribute much to its accessibility.  The resulting statistic has no 

meaningful dimensions or reference values. 

o ACCEMP: this is similar to ACCHH but is the sum of jobs/TT2 

o ACCIND: this is similar to ACCHH but is the sum of industrial jobs/TT2 

o ACCHH3: this is similar to ACCHH but is the sum of jobs/TT3 (raising time 

to the third power in the denominator diminishes its impact; some prior 

studies have found that to be helpful) 

o ACCEMP3: this is similar to ACCHH but is the sum of jobs/TT3 

o ACCIND3: this is similar to ACCHH but is the sum of industrial jobs/TT3 

 

- Distance to the Cordon 

The distance from each zone to the nearest cordon station (the edge of the 

modelled area) via the road network is calculated.  This statistic has been shown 

elsewhere to be relevant to the external share of travel in a zone.  Zones that are 

closer to the cordon tend to send and receive more trips to/from the external 

world. 

- Distance to the CBD 

Although employment and economic activity is spread widely across the Atlanta 

region, downtown Atlanta remains the geographic center of activity.  It seems 

possible that a zone’s proximity to downtown might be an indicator of truck 

activity.  For the purposes of this calculation, “downtown” for Atlanta is assumed 

to be the centroid of zone 16, which is near Piedmont Ave SE and Gilmer St SE 

and “downtown” for Birmingham is assumed to be the centroid of (old) zone 39, 

which is near 5th Ave N and 19th St N. 
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- Zonal Density 

Several of the statistics mentioned above are surrogates for the development 

density in a zone.  In addition to those, three more “pure” density measures were 

calculated by zone: households per acre, employment per acre, and industrial 

employment per acre. 

- Employment Shares 

As mentioned above, ARC maintains eight categories of employment.  It seemed 

reasonable to think that the percentage of a zone’s employment by type might 

provide some meaningful insight into the truck travel characteristics.  Five 

different percentages were calculated for Atlanta: industrial (defined as noted 

above), retail, wholesale, manufacturing, and service, while two different 

percentages were calculated for Birmingham: industrial and retail. 

iv. Estimation 

As noted above, this is an aggregate model of the number of tour origins per zone.  This 

means that the ATRI data needed to be adjusted in some way to reflect the universe of 

truck trips.  The ATRI data represent a sample of truck trips, but there is no data 

available to calculate an expansion factor for these records.  That is, the true universe of 

truck trips is unknown.  The only available information on that universe for Atlanta is the 

2010 truck trips estimated by the current ARC travel model.  This information was used 

to adjust the ATRI trip data.  Table 17 shows the ARC estimated medium + heavy truck 

trips and the ATRI trips by county (for each tour, the number of trips equals the number 

of stops plus one). 
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Table 17: Atlanta Trip Expansion 

County ARC Trips ATRI Trips Factor 

Barrow 13,771 9,182 1.500 

Bartow 15,882 72,635 0.219 

Carroll 17,651 35,897 0.492 

Cherokee 14,376 6,211 2.315 

Clayton 30,244 52,380 0.577 

Cobb 61,016 36,314 1.680 

Coweta 14,169 26,261 0.540 

DeKalb 60,477 74,363 0.813 

Douglas 10,898 41,409 0.263 

Fayette 8,154 1,874 4.351 

Forsyth 13,556 3,289 4.122 

Fulton 104,669 87,494 1.196 

Gwinnett 60,514 51,102 1.184 

Hall 16,345 50,071 0.326 

Henry 11,882 28,830 0.412 

Newton 10,879 6,515 1.670 

Paulding 8,282 4,275 1.937 

Rockdale 6,934 8,354 0.830 

Spalding 12,233 22,869 0.535 

Walton 6,655 12,442 0.535 

 

This model reflects tour origins.  Thus, X/I and X/X tours are excluded from this analysis.  

From Table 9, this results in 137,175 tour records.  Application of the factors in Table 17 

resulted in a total of 117,674 observed tour origins. 

As for Birmingham, based on prior RPC data, the total of about 38,300 I/I + I/X tours was 

initially selected as the actual total of internally-generated truck tours (this would be later 

verified in the assignment validation phase). 

Next, the tour records were summarized by the zone of the tour main origin.  Then, a 

Cube script was written to calculate the ARC and derived variables described above.  

This produced a file with one record per zone with the observed data and several 

candidate explanatory variables.  The study team’s experience with aggregate 

generation models is that the traffic zone level is often unsuited to model estimation, 

because the observed data is too thin.  The usual solution is to further aggregate the 

data to a district system.  A good district system will have enough districts so that the 
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differences in district-level tour origins is clearly related to the differences in the 

independent variables.  For this study, a system of 198 districts for Atlanta provided 

reasonable aggregation – roughly 10 districts per zone, respecting county boundaries. 

As for Birmingham, a system of 179 districts provided reasonable aggregation, 

corresponding to the number of Census tracts in the modelled region.  Several of the 

above candidate variables are zone-specific.  These were converted to district-level 

variables by weighting them by an appropriate variable, usually total employment. 

The calibration file was analyzed using linear regression in the SPSS statistical analysis 

package.  Different approaches were tested, including forcing certain variables and 

allowing others to enter the equation in “stepwise” fashion, depending on their 

contribution to the model’s accuracy.  As for Atlanta, seven models were tested, as 

shown in Table 18, with the variable names defined in Table 19, while nine models were 

tested for Birmingham case (shown in Table 20, with the variable names defined in 

Table 21).  The criteria used to evaluate the models included: 

- logical signs on the coefficients 
- Student’s t scores above 1.96 (95% confidence that the coefficient is statistically 

different from zero) 
- no duplication, overlap, or double-counting of variables 
- high r2 and F statistics 
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Table 18: Atlanta: Candidate Generation Models 

Model Equation r2 F 

1 445.1 + 0.01359*TOTEMP 0.017 3.5 

2 353.8 + 0.09679*TCU + 0.28980*CONST – 0.35653*FIRE + 

0.35796*WHOLE 

0.261 17.0 

3 160.6 + 649.18*TZONE + 3343.48*PCTIND – 2463.72*PCTMFG + 

0.01536*POP – 0.01289*ACCH15 – 16.48*DISTCBD 

0.453 26.4 

4 727.01 + 742.24*TZONE + 0.33815*WHOLE – 0.25827*FIRE + 

0.05271*TCU + 0.01316*POP – 0.01202*ACCH15 – 15.54*DISTCBD 

0.416 19.3 

5 768.79*TZONE + 0.01520*POP + 0.29702*WHOLE – 0.25986*FIRE + 

0.06252*TCU – 0.01525*ACCH15 + 0.004395*ACCI30 - 

0.001278*ACCE15 

0.594 34.7 

6 840.61 + 0.15301*WHOLE + 0.01002*POP + 837.59*TZONE + 

0.05582*TCU + 0.22789*CONST – 0.01222*ACCH15 – 

18.13*DISTCBD – 0.001507*ACCE15 

0.399 15.7 

7 528.86 + 861.07*PCTMFG + 0.01652*POP + 863.48*TZONE + 

4544.80*PCTWHL – 0.01376*ACCH15 – 18.45*DISTCBD 

0.392 20.5 

Note: all variables have t scores of 1.96 or higher, except those shown in italics. 
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Table 19: Atlanta: Candidate Generation Variables 

Variable Description 

DISTRICT District number (1-198) 

ACRES Total acres in district 

COUNTY Census (FIPS) county code 

ATYPE Computed 2010 area type (1-7) 

TZONE Truck zone flag (0/1) 

TOURS Tour origins (I/I + I/X) (this is the dependent variable) 

POP Population 

HH Households 

TOTEMP Total employment 

CONST Construction employment 

MFG Manufacturing employment 

TCU Transportation, communications, utilities employment 

WHOLE Wholesale employment 

RETAIL Retail employment 

FIRE Finance, insurance, real estate employment 

SERVICE Service employment 

TOTPRIV Total private employment (sum of above 7 categories) 
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Variable Description 

GOVT Government employment 

INDUST Industrial employment (sum of CONST, MFG, TCU, WHOLE) 

ACCH15 Households accessible within 15 min 

ACCE15 Employment accessible within 15 min 

ACCI15 Industrial employment accessible within 15 min 

ACCH30 Households accessible within 30 min 

ACCE30 Employment accessible within 30 min 

ACCI30 Industrial employment accessible within 30 min 

ACCHH Household accessibility statistic (HH/time2) 

ACCEMP Employment accessibility statistic (TOTEMP/time2) 

ACCIND Industrial employment accessibility statistic (INDEMP/time2) 

ACCHH3 Household accessibility statistic (HH/time3) 

ACCEMP3 Employment accessibility statistic (TOTEMP/time3) 

ACCIND3 Industrial employment accessibility statistic (INDEMP/time3) 

POPDEN Population/acre (this district) 

EMPDEN Employment/acre (this district) 

HHDEN Households/acre (this district) 

TOTDEN Combined density: (300*employment + 2000*HH)/acre 
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Variable Description 

DISTCOR Distance to the nearest cordon station, miles 

DISTCBD Distance to the CBD (zone 16), miles 

PCTIND Fraction (0.0 – 1.0) of employment that is industrial 

PCTRET Fraction (0.0 – 1.0) of employment that is retail 

PCTWHL Fraction (0.0 – 1.0) of employment that is wholesale 

PCTMFG Fraction (0.0 – 1.0) of employment that is manufacturing 

FLTIND Industrial employees/acre in surrounding districts 

FLTRET Retail employees/acre in surrounding districts 

DEVDENS Combined density: 300*employment + 800*population)/acre 

 

Model #4 for was selected for Atlanta as having the best fit to the criteria described 

above.  This model says that the key variables are wholesale employment, truck zone 

flag, and population.  FIRE employment, accessibility to households, and proximity to the 

CBD are negative factors, which seems logical. 

  



123 
 

 

Table 20:  Birmingham: Candidate Generation Models 

Model Equation r2 F 

1 129.2 + 0.03573*TOTEMP 0.078 14.9 

2 101.2 + 0.35524*IND – 0.09276*OFF 0.393 57.0 

3 -458.2 + 3.72E-03*ACCI15 + 66.62202*ATYPE + 449.89929*PCTRET  

+ 181.91428*TZONE 

0.494 42.4 

4 118.0 + 0.12520*IND – 0.03558*OFF + 2.76E-03*ACCI15  

– 0.02651*ACCHH 

0.449 35.4 

5 164.0 – 32.05466*POPDEN + 4.25E-03*ACCI15 + 0.11665*RET  

– 2.23E-04*ACCE30 

0.490 41.8 

6 157.1 + 19.46591*TZONE – 6.71E-05*EMP – 35.05527*POPDEN 

+ 3.15E-03*ACCI15 

0.470 38.5 

7 175.2 – 39.61360 + 3.61E-03*ACCI15 0.456 73.6 

8 62.2 – 34.78976*POPDEN + 3.35E-03*ACCI15 + 390.91949*PCTRET 

+ 193.23093*TZONE 

0.487 41.3 

9 248.45639*TZONE + 191.86710*PCTRET + 3.05E-03*ACCI15 

+ 4.54692*ATYPE 

0.554 54.4 

Note: all variables have absolute t scores of 1.96 or higher, except those shown in 
italics. 
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Table 21:  Birmingham: Candidate Generation Variables 

Variable Description 

DISTRICT District number (1-179) 

ACRES Total acres in district 

ATYPE Computed 2010 area type (1-9) 

TZONE Truck zone flag (0/1) 

TOURS Tour origins (I/I + I/X) (this is the dependent variable) 

POP Population 

HH Households 

TOTEMP Total employment 

IND Industrial employment 

OFF Office employment 

RET Retail employment 

ACCH15 Households accessible within 15 min 

ACCE15 Employment accessible within 15 min 

ACCI15 Industrial employment accessible within 15 min 

ACCH30 Households accessible within 30 min 

ACCE30 Employment accessible within 30 min 
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Variable Description 

ACCI30 Industrial employment accessible within 30 min 

ACCHH Household accessibility statistic (HH/time2) 

ACCEMP Employment accessibility statistic (TOTEMP/time2) 

ACCIND Industrial employment accessibility statistic (INDEMP/time2) 

ACCHH3 Household accessibility statistic (HH/time3) 

ACCEMP3 Employment accessibility statistic (TOTEMP/time3) 

ACCIND3 Industrial employment accessibility statistic (INDEMP/time3) 

POPDEN Population/acre (this district) 

EMPDEN Employment/acre (this district) 

HHDEN Households/acre (this district) 

TOTDEN Combined density: (300*employment + 2000*HH)/acre 

DISTCOR Distance to the nearest cordon station, miles 

DISTCBD Distance to the CBD (zone 16), miles 

PCTIND Fraction (0.0 – 1.0) of employment that is industrial 

PCTRET Fraction (0.0 – 1.0) of employment that is retail 

DEVDENS Combined density: 300*employment + 800*population)/acre 
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Model #3 for Birmingham was selected as having the best fit to the criteria described 

above.  This model says that the key variables are truck zone flag, area type, percent of 

employment that is retail, and accessibility to industrial employment within 15 min.  The 

coefficients on these variables all have positive signs, which seems logical. 

 

v. Validation 

The model was validated by applying it to zone-level data and comparing the outputs to 

the observed tours.  This required a number of adjustments: 

- Removal of constant term 

SPSS can estimate a regression model with or without a constant term.  The 

chosen method seems to be a matter of the analyst’s preference; it is not clear 

that one method is always better than another.  In this project, the model was 

estimated with a constant term, in order to get the proper coefficients on the 

other variables.  However for model application at the zone level, the constant 

term was removed to prevent the estimation of truck tours in zones where none 

are indicated.  This required adjusting the remaining coefficients to obtain the 

correct total tours. 

- Districts vs. Zones 

Some variables, such as population, are not geography-specific.  The population 

of a district is the sum of the population in its zones.  However, other variables, 

such as TZONE and ACCH15, have values that are related to the level of 

geographic aggregation.  Switching from districts to zones requires adjustments 

in those coefficients to properly represent the effect of the variable. 
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- Area Type Adjustment 

In the subsequent assignment validation step (see below), the study team 

discovered that the Atlanta model was slightly overestimating volumes in the 

more developed areas.  Thus, an area type adjustment was incorporated that 

multiplies the estimated tours by 0.9 in zones with area types 1-5.  No adjustment 

is applied in the rural zones (area type 6, 7).  Conversely, the Birmingham model 

was initially overestimating volumes in the less developed areas.  Thus, an area 

type adjustment was incorporated that reduces the estimated tours in zones with 

area types 7-9.  No adjustment is applied in other zones. 

- Negative Check 

Since the equation includes negative coefficients, a check for negative values is 

included.  These are re-set to zero for any zone. 

- External Tours 

As originally developed, the tour generation model estimated total tour origins at 

internal zones, no matter where they were destined; that is, I/I plus I/X tours.  

However, during assignment validation, it was discovered that the modified 

equation could also be used to derive X/I tours.  This is discussed further below. 

The final zone-level regression equation for Atlanta is as follows: 

Tours = [0.507*WHOLE – 0.158*FIRE + 0.079*TCU + 0.020*POP – 0.0002*ACCH15 – 
0.953*DISTCBD] * area type factor + 990.897*TZONE (1A) 

Similarly, the final zone-level regression equation for Birmingham is as follows: 

Tours = [163.33523*TZONE + 1.01896*POPDEN + 40.13860*PCTRET + 
0.0008547*ACCI15] * area type factor (1B) 

In application, the aggregate estimates of tour starts in each zone are converted to a 

disaggregate file by writing out one record for each tour.  The record contains a single 
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value: the zone where the tour began.  Three separate files are output: I/I, I/X, and X/I 

tours. 

 

vi. External Tours 

Equation (1A and 1B) estimates total tours.  Initially, this was considered to be the sum 

of I/I and I/X tours.  A method was needed to separate those.  Previous work by the 

study team has indicated that this share is related to the zone’s location with respect to 

the cordon.  The closer the zone is to the cordon, the higher its I/X share.  The ATRI tour 

data was tabulated and summarized as shown in Figure 27 (Atlanta) and Figure 28 

(Birmingham).  From these data, least squares model were estimated with the equation: 

Atlanta: I/X share = 0.306 * DISTCOR-0.158     (2A) 

Birmingham:   I/X share = 0.39 – 0.00008 * DISTCOR2.59                                                               (2B) 

 

DISTCOR is the zone’s over-the-road distance to the cordon in miles.  This function is 

applied to each zone and a maximum cutoff value is applied of 90% (Atlanta) and 

constrained to be no less than 5% (Birmingham). 
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Figure 27: Atlanta I/X Share 
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Figure 28: Birmingham I/X Share 
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This share is also limited to a maximum of 90%.  Equations 2-4 produce the cordon truck 

trips shown in Table 22.  The Total figure is derived from applying the 2005 truck share 

(from GDOT classification counts) for each station to the 2010 total count (also GDOT 

data, as posted in the ARC network) (see Table 24). Similarly, the Total figure for 

Birmingham model is derived from applying the 2010 truck share (from ALDOT 

classification counts) for each station to the 2010 total count (also ALDOT data, as 

posted in the BMC network) (see Table 25). 

Table 22:  Atlanta External Tours 

Tour Type Sum 

External 73,490 

Through 60,796 

Total 134,286 

 

Table 23:  Birmingham External Tours 

Tour Type Sum 

External 20,375 

Through 30,907 

Total 51,282 

 

vii. X/X Tours 

Although the ATRI data provided good information on the number of X/X (through) tours, 

there were some geocoding discrepancies that prevented the direct derivation of an X/X 

table from this data.  Instead, a synthetic X/X table was derived based both on the ATRI 



132 
 

tour total and on the 2010 truck totals at each station shown in Table 24.  Note that in 

this study, “X/X tour” refers to a tour that starts and ends outside of the modelled area, 

even if it makes one or more intermediate stops within the area.  This is slightly different 

from the conventional definition (passing through with no intermediate stops). 

The synthesis process started with past experience to estimate the external/through split 

at each cordon station.  This is generally a function of roadway facility type and volume; 

major roads with higher volumes have a higher X/X share.  Next, examination of the 

cordon station geography indicated X/X movements that were unlikely on the basis of 

geography.  These station-station patterns were combined with the initial estimate of X/X 

trip ends to develop an initial X/X table by vehicle type.  This initial table was then 

Fratared to match the estimated X/X trip ends.  An adjustment was made to account for 

the major interstate movements through the modelled region (Atlanta: I-75 and I-20; 

Birmingham: I-65, I-59, and I-20).  Finally, the daily X/X table was balanced, so that the 

volume is the same in each direction, which is a common assumption for X/X tables.  

The resulting tables were assigned to the network by themselves and the volumes were 

examined.  This process produced a set of external trip tables that were judged to be 

reasonable.  The resulting table includes 30,398 (Atlanta) and 15,453 (Birmingham) X/X 

trips (half the value shown in Table 22, because X/X trips cross the cordon twice). 

The procedure to forecast through tours, used in almost all regional models, is to apply a 

growth rate to each external station and iteratively factor the table’s rows (origins) and 

columns (destinations) until the desired row and column totals are met.  This is known as 

the “Fratar” process (Fratar, 1954).  In this model, the tour generation step uses the 

calculated internal tours and input external tours to work backwards to calculate a 

through growth rate by station that maintains the correct cordon total at all stations.  
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Table 24: Atlanta Cordon Data 

Station Name 2010 Total 2010 X/X 2040 Total 

2028 SR 113 640 0 998 

2029 
Chulio 
Rd/Euharlee Rd 

143 0 211 

2030 SR 20/US 411 2,726 1,361 3,261 

2031 SR 293 215 0 298 

2032 SR 140 961 0 1,397 

2033 US 41 334 0 510 

2034 I-75 20,520 12,306 27,533 

2035 US 411 404 0 540 

2036 SR 108 361 0 655 

2037 I-575 (SR 5) 2,293 1,373 3,716 

2038 SR 372 321 0 573 

2039 SR 9 425 0 901 

2040 Hopewell Rd 345 0 615 

2041 SR 400/US 19 1,765 704 2,433 

2042 
Blue Ridge 
Overlook 

306 0 513 

2043 SR 53 375 0 526 

2044 SR 136 302 0 574 

2045 SR 60 865 345 1,640 

2046 SR 115 191 0 390 

2047 SR 52 212 0 406 

2048 SR 284 167 0 297 

2049 US 129 993 0 1,391 

2050 SR 254 120 0 207 

2051 Skitt Mtn Rd 139 0 238 

2052 US 23/SR 365 2,260 1,240 3,880 

2053 
SR 51/Cornelia 
Hwy 

189 0 328 

2054 SR 51 255 0 427 

2055 SR 52 172 0 245 

2056 SR 82 156 0 274 

2057 SR 11/US 129 954 0 1,624 

2058 SR 60/SR 332 433 0 740 

2059 SR 53 1,154 0 1,960 

2060 I-85 15,826 9,492 25,752 

2061 SR 124 681 0 1,037 

2062 SR 53 546 0 878 

2063 Jefferson Hwy 463 0 749 

2064 Double Bridges Rd 144 0 206 
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Station Name 2010 Total 2010 X/X 2040 Total 

2065 SR 82 205 0 401 

2066 
SR 330 (Tallassee 
Rd) 

285 0 474 

2067 Atlanta Hwy 689 0 1,034 

2068 SR 316/US 29 2,217 1,218 2,638 

2069 Barber Creek Rd 65 0 139 

2070 SR 53 380 0 615 

2071 US 78 2,124 849 3,306 

2072 Snows Mill Rd 69 0 106 

2073 SR 186 168 0 245 

2074 SR 83 303 0 441 

2075 Monroe Hwy 68 0 102 

2076 
Pannell/Prospect 
Rd 

92 0 153 

2077 US 278 321 128 489 

2078 I-20 8,037 4,826 11,639 

2079 SR 142 506 0 611 

2080 SR 11 282 0 427 

2081 Henderson Mill Rd 240 0 390 

2082 SR 212 568 0 833 

2083 SR 36 356 0 648 

2084 Keys Ferry Rd 190 0 275 

2085 Old Jackson Rd 229 0 370 

2086 SR 42/US 23 907 363 1,542 

2087 I-75 18,856 11,322 29,476 

2088 Jackson Rd 201 0 339 

2089 SR 16 1,180 0 2,244 

2090 SR 36 137 0 234 

2091 Macon Rd 399 0 687 

2092 US 41 1,073 592 1,619 

2093 SR 155 1,072 429 1,617 

2094 SR 362 653 0 810 

2095 SR 18 68 0 127 

2096 SR 85 188 0 291 

2097 SR 54 78 0 124 

2098 US 41 559 225 782 

2099 I-85 9,162 5,504 15,147 

2100 US 29 76 0 119 

2101 Corinth Rd 143 0 273 

2102 SR 34 530 0 864 

2103 SR 1 839 337 1,145 
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Station Name 2010 Total 2010 X/X 2040 Total 

2104 Stoney Pt 122 0 414 

2105 SR 100 321 0 142 

2106 SR 100/SR 5 375 0 453 

2107 SR 166 4,767 0 1,813 

2108 SR 100 356 0 497 

2109 SR 166 168 0 256 

2110 I-20 11,447 6,868 20,929 

2111 US 27 993 496 1,800 

2112 SR 1 BUS 707 353 1,140 

2113 SR 78 646 0 1,054 

2114 SR 113 284 0 620 

2115 SR 120 620 0 841 

2116 Vinson Mtn Rd 234 0 398 

2117 SR 101 530 0 681 

2118 US 278 845 465 1,316 

     Totals 

 

134,286 60,796 203,053 

 
Table 25:  Birmingham Cordon Data 

Station Name 2010 Trucks 2010 TRK X/X 2040 Trucks 

964 US 31 N 100 0 190 

965 2nd St 26 0 40 

966 AL 79 90 10 170 

967 AL 75 122 0 230 

968 Deer Haven Rd 0 0 0 

969 CR 30 0 0 0 

970 I-59 N 6,070 3,764 14,310 

971 US 11 N 112 0 200 

972 CR 96/Whites Chapel Pkwy 59 0 100 

973 I-20 E 13,764 8,534 32,450 

974 US 411 E 166 0 310 

975 US 78 E 64 0 120 

976 CR 43/CR 55 0 0 0 

977 
 

40 0 90 

978 AL 60 0 0 0 

979 US 280 218 22 510 

980 AL 145 22 0 40 

981 I-65 S 8,010 4,966 18,880 

982 US 31 S/AL 3 70 0 130 

983 AL 155 46 0 90 
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Station Name 2010 Trucks 2010 TRK X/X 2040 Trucks 

984 CR 73 48 0 90 

985 AL 25 42 0 80 

986 CR 10/Marvel Rd 0 0 0 

987 CR 12/Grey Hill Rd 38 0 60 

988 Eastern Valley Rd 19 0 30 

989 CR 20/Old Tuscaloosa Hwy 0 0 0 

990 I-20 W/US 11 S 13,987 8,672 32,980 

991 CR 36/Johns Rd 0 0 0 

992 CR 21/Camp Oliver Rd 19 0 30 

993 AL 269 22 0 40 

994 
 

0 0 0 

995 CR 20/Horsecreek Blvd 0 0 0 

996 Old US 78/AL 5 190 20 400 

997 Bankston Rd 0 0 0 

998 US 78 W 158 98 370 

999 I-65 N 7,780 4,824 18,340 

     Total 
 

51,282 30,910 120,280 

 

 

Tour Main Destination Choice 

 

i. Model Structure 

The tour generation model established the starting point (zone) of the tour.  The 

objective of the tour main destination choice model is to estimate the location of the 

tour’s main destination zone.  This is done using a logit destination choice model.  This 

works as follows: a range of candidate destination zones is considered.  For each 

candidate, the utility of going to that zone is calculated.  For all candidates, the utilities 

are exponentiated and summed, and the probability of going to zone J is computed as 

the exponentiated utility for zone J divided by the sum of the exponentiated utilities of all 

candidate zones: 
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where x is the range of candidate destination zones.  U is a linear function of various 

attributes of the origin zone I and destination zone J.  The model is applied in Monte 

Carlo fashion: once the probabilities are calculated using equation (5), they are sorted in 

ascending order and the cumulative probability of going to each zone established.  A 

random number is generated and compared to these cumulative probabilities.  The first 

destination zone whose cumulative probability exceeds the random number is selected 

as the tour main destination zone. 

In application, this process is applied separately but identically to I/I and X/I tours, 

because those tours are both destined to internal zones, about which much is known.  

However, I/X tours are different because much less is known about the external stations 

as destinations.  That model is described below. 

ii. Estimation 

The available ARC and RPCGB network and zonal data and newly generated statistics 

available for destination choice estimation are the same as described in sections 3.ii and 

3.iii.  As with the tour generation model, a Cube script was written to prepare the data for 

the estimation process. 

For the main destination choice model, a process must be used to limit the choice of 

candidate destination zones.  This is because in logit model estimation, the estimation 

program (ALOGIT) must have information on the possible choices.  ALOGIT cannot 

accommodate all 2,027 (Atlanta) and 850 (Birmingham) possible internal zones.  In 

addition, most of these zones are not reasonable alternatives to the chosen zone; they 

are too far from the origin and/or contain too few truck-attracting land uses.  Since 
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including these unlikely zones does affect the choice probabilities in a multinomial logit 

model, they are best excluded from the destination choice set. The typical solution is to 

select a sample of possible destination zones.  Many analysts select 10-20 zones.  This 

study uses the selected zone and 19 other candidates, for a total of 20. 

In the early days of logit destination choice models, the practice was to make this 

selection randomly from the set of all internal zones.  The idea was that random 

selection would produce a sample that would probably include zones that were fairly 

realistic candidates as well as those that were unlikely.  However, recent research has 

indicated that a more robust process is to select the candidate zones with recognition of 

their likelihood of being true alternatives to the chosen zone.  This is known as 

importance sampling with replacement, as described in (Bradley, Bowman, & 

Griesenbeck, 2010) and elsewhere.  As they noted: 

The available alternatives are sampled in a way that allows the probability 
of being drawn into the sample to be calculated for each drawn 
alternative. Statistical procedures are then used during model estimation 
and application to allow the sample to represent the entire set of available 
alternatives without biasing the results. 

A version of this process was implemented in this project.  First, a new employment 

variable was computed for each zone: the sum of industrial employment plus 50% of 

non-industrial employment.  It was assumed that weighting this variable towards 

industrial employment would relate more closely to truck travel.  For each zone i, a zonal 

array was calculated as this employment variable divided by the square of the travel time 

from zone i to each other zone.  Zones with no employment were excluded 

mathematically and zones that were more than 180 minutes from zone i were excluded 

logically.  The resulting statistic was summed for zone i.  Then for each destination zone 

j in the array, the statistic was divided by the sum, producing a value that could be 

interpreted as a probability: 
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where p’ij is the probability of selecting destination j given origin i, emp* is the new 

employment variable, and tt2 is the square of the off-peak zone-zone network travel time.  

These probabilities are sorted in ascending order and a cumulative probability is 

computed for each zone. 

Next, a Monte Carlo process is used to select the alternative zones.  A random number 

is generated and compared to the cumulative probabilities.  This is done 19 times.  If a 

duplicate destination zone is selected, another selection is made.  The final choice set 

consists of the actual origin and destination zones and 19 alternative destination zones.  

For each destination zone, the variables shown in Table 26 are output to the estimation 

file. 
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Table 26: Atlanta: Candidate Destination Zone Variables 

Variable Description 

ACRES Total acres in district 

TIME Network travel time from tour origin zone 

COUNTY Census (FIPS) county code 

TZONE Truck zone flag (0/1) 

TOTEMP Total employment 

POP Population 

ATYPE Computed 2010 area type (1-7) 

INDUST Industrial employment (sum of CONST, MFG, TCU, WHOLE) 

ACCE30 Employment accessible within 30 min 

ACCI30 Industrial employment accessible within 30 min 

ACCHH Household accessibility statistic (HH/time2) 

ACCEMP Employment accessibility statistic (TOTEMP/time2) 

ACCIND Industrial employment accessibility statistic (INDEMP/time2) 

DISTCOR Distance to the nearest cordon station, miles 

DISTCBD Distance to the CBD (zone 16), miles 

CONST Construction employment 

MFG Manufacturing employment 

TCU Transportation, communications, utilities employment 

WHOLE Wholesale employment 

 

Table 27:  Birmingham: Candidate Destination Zone Variables 

Variable Description 

ACRES Total acres in district 

TIME Network travel time from tour origin zone 

TZONE Truck zone flag (0/1) 

TOTEMP Total employment 

POP Population 

ATYPE Computed 2010 area type (1-9) 

INDUST Industrial employment  

ACCE30 Employment accessible within 30 min 

ACCI30 Industrial employment accessible within 30 min 

ACCHH Household accessibility statistic (HH/time2) 

ACCEMP Employment accessibility statistic (TOTEMP/time2) 

ACCIND Industrial employment accessibility statistic (INDEMP/time2) 

DISTCOR Distance to the nearest cordon station, miles 

DISTCBD Distance to the CBD, miles 

 

ALOGIT applies the maximum likelihood estimation technique for estimating coefficients, 

but it does not automatically identify the best variables to use.  Therefore, logit model 

estimation is a trial-and-error process to identify that set of variables and coefficients that 

provides the best fit to the data.  The criteria for model selection were as follows: 
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Highest value of the 2 statistic.  This is an ALOGIT statistic that is analogous to 

the r2 statistic from linear regression analysis.  It ranges from 0.0 to 1.0.  Higher 

values are better. 

Coefficients should have student’s t scores of 1.96 or higher (in absolute value; 

this provides 95% confidence that the coefficient is statistically different from 

zero). 

The variables should be reasonably related to the choice of destination and have 

logically correct signs. 

- Cross-correlation (double-counting) among variables should be minimized. 

The I/I tour model was estimated first.  A variety of models was considered, as shown in 

Table 28.  Typically, destination choice models have three types of variables: 

Travel time: network time from tour origin to tour destination.  In this study, off-

peak time is used, on the assumption that truck destination choice is less 

sensitive to congestion than to other factors. The following logic is applied. Most 

truck trips are made for the purpose of delivering goods. This reflects a contract 

between the shipper and receiver.  The truck driver is merely fulfilling that prior 

contract -- he has no control whatsoever over the locations where he is to make 

his deliveries.  He MUST go where the goods are to be delivered, regardless of 

how congested that location is.  Therefore, the truck's destination cannot be 

conditioned on the level of congestion and it would be inappropriate to use 

congested travel times in the determination of truck trip patterns. This is 

fundamentally different from personal travel.  People can select their destinations 

based on congestion level.  Sometimes that reflects a longer-term choice, such 

as for work or school.  Sometimes it's a choice that can be made in real time, 

such as shopping trips. Where congestion enters the picture is in the timing of 



142 
 

deliveries.  In fact, a major ongoing trend in larger cities is to require truck 

deliveries in congested areas to be made in off-peak hours, like midnight - 6 am. 

Variables describing the size of the destination zone.  These include various 

breakdowns of employment.  By common convention, the natural logarithm of 

these variables is used in the utility function (Daly, 1982). 

Variables describing the characteristics of the destination zone, separate from 

the size variables.  For example, prior research (Kim, 2011; Kim, Park 7 Kim, 

2011) has suggested that employment accessibility can have both positive and 

negative impacts on truck destination choice.  The positive effect 

(“agglomeration”) is that truck drivers are more likely to prefer destinations if they 

are highly accessible.  The negative effect (“competition”) is that a potential 

destination that is surrounded by other potential destinations effectively 

competes with those other adjacent opportunities. 
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Table 28: Atlanta: I/I Tour Main Destination Choice Models 

 

Note: model shown in bold was selected. 

 

Run Variables Results rhosq(0) time coeff

a first run: time, ln(tot emp) not great -0.3510 -0.0297

b time, ln(non-ind), ln(const), ln(manuf), ln(TCU), ln(whole), ln(other) much better but TCU sign wrong 0.2818 -0.0184

c time, ln(non-ind), ln(const), ln(manuf+TCU), ln(whole), ln(other), tzone Manuf+TCU sign wrong 0.2511 -0.0133

d time, ln(non-ind), ln(indust), tzone TZONE has wrong sign 0.2151 -0.0131

e time, ln(non-ind), ln(indust), urban dummy (atype=1,2) urb dum helped a bit; sign and t OK (< 0) 0.2540 -0.0107

f time, ln(non-ind), ln(indust), rural dummy (atype=5,6,7) rur dum helped a lot; sign and t OK (> 0) 0.3316 -0.0088

g time, ln(non-ind), ln(indust), urban dummy (AT=1,2), rural dummy (AT=5-7) combined dummy helped a little; signs OK 0.3386 -0.0087

h model g + dist to cordon helped; sign OK (< 0) 0.3761 -0.0210

i add dist to cbd helped a tiny bit; sign OK? (< 0); not as good as dist cordon 0.3762 -0.0205

j model h + acc emp 30 big improvement in rhosq but sign is < 0; competition effect? 0.4641 -0.0162

k model h + acc ind 30 minor improvement 0.3775 -0.0207

l model h + emp acc (continuous) big improvement in rhosq but sign is < 0; competition effect? 0.4799 -0.0154

m model h +  hh acc (continuous) small improvement; sign > 0 0.3767 -0.0213

n model l + tzone small improvement; sign > 0 0.4855 -0.0143

o model n + pop medium improvement; sign > 0 0.5089 -0.0151

p model o + dev density medium improvement; sign < 0; Urban and Rural signs flipped 0.5280 -0.0152

q model p + bias constants estimation failed
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Table 29:  Birmingham: I/I Tour Main Destination Choice Models 

 

Note: model shown in bold was selected. 

Run Variables Results rhosq(0) time coeff

a first run: time, Size: ind, non-ind emp t's, signs OK -0.0618 -0.0177

b revise calib file to randomize alt. no. of chosen alt; re-do run a t's, signs OK -0.0622 -0.0176

c model b + bias constants t's, signs OK -0.0433 -0.0177

d model b + truck zone t's, signs OK -0.0622 -0.0176

e model b + urban dummy (atype=1-3) t OK, sign < 0 -0.0160 -0.0166

f model e + rural dummy (atype=8,9) t OK, sign > 0 0.0467 -0.0079

g model f + add pop to Size t OK, sign > 0 0.1339 -0.0085

h model g + distance to cordon t OK, sign < 0 0.1357 -0.0087

i model g + distance to CBD t OK, sign < 0, not as good as distCor 0.1339 -0.0084

j model h + accemp30 t OK, sign < 0 (competition effect?) 0.1703 -0.0077

k model h + empacc t OK, sign < 0 (competition effect?); rho-sq not as good as model j 0.1533 -0.0100

l model j + development density t OK, sign < 0, big improvement in rho-sq 0.1996 -0.0094
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The final Atlanta I/I tour main destination choice model estimation report is shown in Table 30.  

In this model, the most significant variables (based on the “T” Ratios) are travel time, truck zone 

flag, employment accessibility, and development density.  Travel time has a negative coefficient, 

as it should.  The coefficients on employment accessibility and development density are 

negative, which indicates a competitive effect.  On the other hand, the urban dummy is positive 

and the rural dummy is negative, which works slightly in the opposite direction.  Distance to the 

cordon has a negative coefficient, meaning that zones close to the cordon are less likely to be 

truck destinations (which is consistent with the rural coefficient). 

 

Table 30: Atlanta: I/I Tour Main Destination Choice Selected Model 

Hague Consulting Group                                                   Page 18 

ALOGIT Version 3F/2 (602)                                  17:09:49 on 11 Nov 13 

  

       Ga Tech Truck Tour Based Model: ARC: Tour Destination Choice I/I 

  

Convergence achieved after 12 iterations 

Analysis is based on 55606 observations 

Likelihood with Zero Coefficients =-166580.6888 

Likelihood with Constants only    =       .0000 

Initial Likelihood                =-115885.9477 

Final value of Likelihood         = -78620.4582 

   "Rho-Squared" w.r.t. Zero      =  .5280 

   "Rho-Squared" w.r.t. Constants =  .0000 

  

ESTIMATES OBTAINED AT ITERATION 12 

 

Likelihood = -78620.4582 

 

             time      tzone      urban      rural     distcor     accemp 

  

 Estimate  -.1517E-01  .6466      .1547     -.3832E-01 -.3733E-02 -.2671E-03 

Std. Error   .360E-03   .162E-01   .631E-01   .176E-01   .874E-03   .309E-05 

"T" Ratio  -42.1       40.0        2.5       -2.2       -4.3      -86.6 

 

           devdens    nonIndEmp  indEmp      pop 

  

 Estimate  -.3853E-03  1.000      3.879      2.362 

Std. Error   .558E-05   .000       .157       .158 

"T" Ratio  -69.0         .0       24.8       15.0 

Note: “Estimate” refers to the coefficient value. 
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Estimation of the destination choice model for X/I tours was done in exactly the same manner.  

This model was estimated following the I/I model.  Table 31 shows the candidate models and 

Table 32 shows the final estimation report.  The results are consistent with those of the I/I model 

except that travel time now has a positive coefficient.  This makes sense given that the origins 

are all external stations; it means that the destinations are more likely to be in the interior of the 

modelled region (downtown) than in outlying areas.  This is consistent with the negative 

coefficient on DISTCBD. 
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Table 31: Atlanta: X/I Tour Main Destination Choice Models 

 

Run Variables Results rhosq(0) time coeff

a time, ln(non-ind), ln(indust), urban (AT=1,2), rural (AT=5-7); dist to cordon; emp acc; tzone sign on time > 0; dist to cordon duplicates time 0.0726 0.0164

b time, ln(non-ind), ln(indust), urban (AT=1,2), rural (AT=5-7); dist to cbd; emp acc; tzone sign on time > 0 0.0778 0.0160

c time, ln(non-ind), ln(indust), urban (AT=1,2), rural (AT=5-7); emp acc; tzone sign on time > 0 0.0711 0.0167

d time, ln(non-ind), ln(indust), urban (AT=1,2), rural (AT=5-7); emp acc; tzone, time^2 sign on time > 0 0.0729 0.0343

e ln(non-ind), ln(const), ln(manuf), ln(TCU), ln(whole), urban (AT=1,2), rural (AT=5-7); emp acc; tzone disaggregating empl didn't help 0.0551

f ln(non-ind), ln(indust), urban (AT=1,2), rural (AT=5-7); emp acc; tzone; suburb (AT=3,4) failed run 0.0392

g ln(non-ind), ln(indust), urban (AT=1,2), rural (AT=5-7); emp acc; tzone; hh acc didn't help much 0.0395

h model c + pop on size pop helped a lot, sign OK (> 0) 0.1222 0.0154

i model c + pop on size, dist to cbd dist to cbd helped a little; sign < 0 0.1234 0.0152

j model c + pop on size, dist to cbd, dev density devdens helped a lot; sign < 0; signs on Urban and Rural are flipped 0.1722 0.0139
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Table 32: Atlanta: X/I Tour Main Destination Choice Selected Model 

Hague Consulting Group                                                   Page 18 

ALOGIT Version 3F/2 (602)                                  16:55:49 on 11 Nov 13 

  

       Ga Tech Truck Tour Based Model: ARC: Tour Destination Choice X/I 

  

Convergence achieved after   8 iterations 

  

Analysis is based on 25410 observations 

  

Likelihood with Zero Coefficients = -76121.5571 

  

Likelihood with Constants only    =       .0000 

  

Initial Likelihood                = -90904.4278 

  

Final value of Likelihood         = -63012.7172 

  

   "Rho-Squared" w.r.t. Zero      =  .1722 

  

   "Rho-Squared" w.r.t. Constants =  .0000 

 

ESTIMATES OBTAINED AT ITERATION  8 

 

Likelihood = -63012.7172 

 

             time      tzone      urban      rural     distcbd     accemp 

  

 Estimate   .1390E-01  .9380      .5914     -.1604     -.2834E-01 -.2819E-03 

Std. Error   .264E-03   .194E-01   .679E-01   .219E-01   .618E-03   .384E-05 

"T" Ratio   52.6       48.5        8.7       -7.3      -45.9      -73.3 

 

           devdens    nonIndEmp  indEmp      pop 

  

 Estimate  -.5027E-03  1.000      3.551      2.217 

Std. Error   .686E-05   .000       .158       .159 

"T" Ratio  -73.3         .0       22.4       14.0 

 

 

The final Birmingham I/I tour main destination choice model estimation report is shown in Table 

33.  In this model, the most significant variables (based on the “T” Ratios) are travel time, truck 

zone flag, area type dummies, distance to the cordon, employment accessibility, and 

development density.  Travel time has a negative coefficient, as it should.  The coefficients on 

employment accessibility and development density are negative, which indicates a competitive 

effect.  The Urban dummy is negative and the rural dummy is positive, which works in the same 

direction.  Distance to the cordon has a positive coefficient, meaning that zones close to the 

cordon are more likely to be truck destinations (which is consistent with the rural coefficient).  



149 
 

Table 33: Birmingham: I/I Tour Main Destination Choice Selected Model 

Hague Consulting Group                                                   Page 16 

ALOGIT Version 3F/2 (602)                                  17:20:34 on 17 Mar 14 

  

    Ga Tech/UAB Truck Tour Based Model: Birmingham Tour Destination Choice I/I 

  

  

Convergence achieved after   8 iterations 

  

Analysis is based on 25766 observations 

  

  

Likelihood with Zero Coefficients = -77188.0378 

  

Likelihood with Constants only    = -75807.5521 

  

Initial Likelihood                = -79057.0161 

  

Final value of Likelihood         = -61784.8794 

  

  

   "Rho-Squared" w.r.t. Zero      =  .1996 

  

   "Rho-Squared" w.r.t. Constants =  .1850 

  

ESTIMATES OBTAINED AT ITERATION  8 

  

Likelihood = -61784.8794 

 

             time      tzone      urban      rural     distcor    accemp30 

  

 Estimate  -.9364E-02  .5070     -.8760      .9929      .1962E-01 -.8908E-06 

Std. Error   .483E-03   .196E-01   .420E-01   .246E-01   .194E-02   .145E-07 

"T" Ratio  -19.4       25.9      -20.9       40.4       10.1      -61.3 

  

  

           devdens    nonIndEmp   indEmp      pop 

  

 Estimate  -.2729E-03  1.000      4.092      1.656 

Std. Error   .508E-05   .000       .196       .188 

"T" Ratio  -53.8         .0       20.9        8.8 

Note: “Estimate” refers to the coefficient value. 

Estimation of the destination choice model for X/I tours was done in exactly the same manner.  

This model was estimated following the I/I model. Table 34 shows the candidate models and 

Table 35 shows the final estimation report.  The results are consistent with those of the I/I model 

except that travel time was dropped from the equation because it consistently had a positive 

coefficient.  This would mean that inbound external trucks prefer to go to the furthest internal 

destination possible, which seems illogical.  Distance to the cordon now has a positive 

coefficient.  This makes sense given that the origins are all external stations; it means that the 
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destinations are more likely to be in the interior of the modelled region (downtown) than in 

outlying areas.  This is also consistent with the negative coefficient on DISTCBD.  The density 

and accessibility effects are similar to the I/I model. 

Table 34:  Birmingham: X/I Tour Main Destination Choice Models 

 

Table 35: Birmingham: X/I Tour Main Destination Choice Selected Model 

Hague Consulting Group                                                   Page 16 

ALOGIT Version 3F/2 (602)                                   9:55:29 on 28 Apr 14 

  

    Ga Tech/UAB Truck Tour Based Model: Birmingham Tour Destination Choice X/I 

  

  

Convergence achieved after   9 iterations 

  

Analysis is based on 22139 observations 

  

  

Likelihood with Zero Coefficients = -66322.5168 

  

Likelihood with Constants only    = -66215.9570 

  

Initial Likelihood                = -70123.6960 

  

  

Final value of Likelihood         = -49120.4160 

 

   "Rho-Squared" w.r.t. Zero      =  .2594 

  

   "Rho-Squared" w.r.t. Constants =  .2582 

 

  

ESTIMATES OBTAINED AT ITERATION  9 

 

Likelihood = -49120.4160 

 

            tzone      urban      rural     distcor    distcbd    accemp30 

  

 Estimate   1.079     -1.248      1.894     -.7333E-01 -.1595     -.1171E-05 

Std. Error   .215E-01   .485E-01   .266E-01   .223E-02   .166E-02   .162E-07 

"T" Ratio   50.1      -25.7       71.2      -32.8      -95.8      -72.1 

  

  

           devdens    nonIndEmp   indEmp      pop 

  

 Estimate  -.2972E-03  1.000      2.825     -.6592 

Std. Error   .616E-05   .000       .985E-01   .997E-01 

"T" Ratio  -48.2         .0       28.7       -6.6 

 

 

Run Variables Results rhosq(0) time coeff

a start with I/I model j sign on time > 0 0.2514 0.0432

b model a w/o distcor run failed

c model a w/o time t's and signs OK but rho-sq not as good 0.1714

d model b + distcbd t's and signs OK but rho-sq better; sign on time > 0 0.2949 0.0363

e tzone, urban, rural, distcbd, distcor, accemp30, dev dens t's and signs OK 0.2594 0
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iii. I/X Model 

As noted above, the tour destination choice model for I/X tours is different.  Initially, the research 

team attempted to estimate this model in ALOGIT in the same manner as for the I/I and X/I 

tours.  However, none of the candidate models was suitable.  Generally, the coefficients did not 

have logical signs, especially on the key external station size variable: volume.  This is probably 

due to inaccurate geocoding of the external GPS records to ARC’s external stations. 

Instead, an I/X logit model was synthesized using a very simple utility equation: 

Atlanta:                  U = -0.003 * time + 0.79 * ln(cordon volume) (7A) 

Birmingham:          U = -0.003 * time + 1.0* ln(cordon volume) (7B) 

This says that the likelihood of a tour from zone I being destined to external station J is based 

on the travel time from I to J and the natural log of the daily truck count at station J, which 

seems logical.  An initial coefficient on time was borrowed from the I/I model and adjusted 

during assignment validation.  Also, the coefficient on ln (cordon volume) was adjusted during 

assignment validation so as to produce a more accurate total truck volume at the external 

stations. 

iv. Validation 

The model was applied to the estimated set of tour origins.  Initial examination of the average 

tour time (network time directly from tour origin to tour main destination, excluding intermediate 

stops) for I/I tours indicated that the average estimated tour time was too long and there were 

far too few intrazonal tours.  The solution was to reduce the algebraic values of the time 

coefficient (make it more negative for I/I and external tours).  The I/I time coefficient was 

changed to -0.0675 and the external time coefficient was changed to -0.003 for Atlanta model.  

As for the Birmingham model, the I/I time coefficient was changed to -0.044.  Also, an intrazonal 

dummy variable was added to estimate a higher share of intrazonal (round-trip) tours, with a 
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coefficient of 5.25.  For X/I tours, the estimated tour time was too short.  This was solved by 

adding a small positive coefficient on travel time, which is what most of the X/I calibration runs 

had suggested.  These changes produced a reasonably close comparison of observed and 

estimated average tour travel time, as shown in Table 36. 

Table 36: Atlanta: Tour O/D Average Time 

Tour Type Observed Estimated 

I/I 34.89 35.12 

External (I/X + X/I) 73.97 74.30 

 

Table 37: Birmingham: Tour O/D Average Time 

Tour Type Observed Estimated 

I/I 17.02 15.91 

External (I/X + X/I) 58.95 51.92 

 

Table 38 shows a comparison of observed (GPS) and estimated I/I tour patterns.  The 

correlation between these two datasets is 0.84 (Atlanta) and 0.78 (Birmingham). 

As noted above, the coefficient on ln (cordon volume) was calculated so that the sum of the 

estimated I/X +X/I tours (plus twice the X/X trips) would equal the total cordon trips at each 

external station, this is a basic input to the model.  The correlation between estimated and 

observed cordon volumes is 0.997 (Atlanta). 
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Table 38: Atlanta: I/I Tour Patterns 

Observed 

                               Destination District                           

                                                                              

                |       1       2       3       4       5       6 |     Total 

 ---------------+-------------------------------------------------+---------- 

 O   1 Atlanta  |   21651    3484    2940    3525    3143       0 |     34743 

 r   2 North    |    4970    9610    2593    2193    1806       0 |     21172 

 i   3 East     |    3680    2025   11197    1669    1518       0 |     20089 

 g   4 South    |    4489    2309    1743   10378    1545       0 |     20464 

 i   5 West     |    3348    1581    1258    1447    7322       0 |     14956 

 n   6 External |       0       0       0       0       0       0 |         0 

 ---------------+-------------------------------------------------+---------- 

       Total        38138           19731           15334         |    111424 

                |           19009           19212               0 |           

 

Estimated 

                               Destination District                           

                                                                              

                |       1       2       3       4       5       6 |     Total 

 ---------------+-------------------------------------------------+---------- 

 O   1 Atlanta  |   16443    8128    8962    5666    3579       0 |     42778 

 r   2 North    |    3977    8579    2103     701    1725       0 |     17085 

 i   3 East     |    4035    2100   11302     974     397       0 |     18808 

 g   4 South    |    3522     981    1374    5400    1090       0 |     12367 

 i   5 West     |    1054    1000     244     550    2040       0 |      4888 

 n   6 External |       0       0       0       0       0       0 |         0 

 ---------------+-------------------------------------------------+---------- 

       Total        29031           23985            8831         |     95926 

                |           20788           13291               0 |           

 

Table 39: Birmingham: I/I Tour Patterns 

Observed 

                |       1       2       3       4       5       6       7 |     Total 

 ---------------+---------------------------------------------------------+---------- 

 O   1 Central  |    4265     444      70      55    1365     299       0 |      6498 

 r   2 North    |     428    1274      29      43     602     128       0 |      2504 

 i   3 East     |     105      70     206      28     279      41       0 |       729 

 g   4 South    |      91      85      42     609     435     133       0 |      1395 

 i   5 West     |    1560     756     150     148    8970     594       0 |     12178 

 n   6 Shelby   |     340     176      30      61     761    1934       0 |      3302 

     7 External |       0       0       0       0       0       0       0 |         0 

 ---------------+---------------------------------------------------------+---------- 

       Total         6789             527           12412               0 |     26606 

                |            2805             944            3129         |           

 

Estimated 

                |       1       2       3       4       5       6       7 |     Total 

 ---------------+---------------------------------------------------------+---------- 

 O   1 Central  |    3385    1022     410     511    2051     744       0 |      8123 

 r   2 North    |      85     707      32      22     145      54       0 |      1045 

 i   3 East     |      45      41     212      18      38      22       0 |       376 

 g   4 South    |      82      56      43     349     166     170       0 |       866 

 i   5 West     |     282     216      81     125    2444     192       0 |      3340 

 n   6 Shelby   |      35      37      14      54      75     994       0 |      1209 

     7 External |       0       0       0       0       0       0       0 |         0 

 ---------------+---------------------------------------------------------+---------- 

       Total         3914             792            4919               0 |     14959 

                |            2079            1079            2176         |           
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Intermediate Stop Models 

 

i. Model Structure 

The intermediate stop model is patterned after the Brunswick model (Allen, 2011).  Two 

decisions are modelled: 1) how many stops to make, and 2) the locations (zones) of those 

stops.  For model #1, the first step is to analyze the observed number of stops.  Figure 29 

shows the distribution of tours by type and number of stops.  Internal tours have about twice as 

many stops (mean = 3.00 (Atlanta); 2.26 (Birmingham)) than external tours (mean = 1.43 

(Atlanta); 0.96 (Birmingham)).  For all tours (excluding X/X), 34.4% (Atlanta) and 46.7% 

(Birmingham) made no stops.  This confirms the value of using the tour-based approach for 

trucks.  Examination of the data in Figure 29 and Figure 30 indicate that 91.3% of Atlanta tours 

and 95.1% of Birmingham tours made 0 – 6 stops.  Therefore, six stops was chosen as the 

highest number of stops to model. 

Model #2 is developed independently of model #1.  That is, once the number of stops is 

estimated, a separate process is used to identify where those stops are.  This stop location 

model is similar to the main destination choice model and is a simplified version of other such 

models.  Some other models attempt to estimate the sequence of stops or impose some kind of 

elapsed time constraint or other techniques to represent the locus of the tour.  The model 

proposed here takes a much simpler approach (similar to Brunswick) and models each stop 

independently.  For example, on a tour with three intermediate stops, the location of stop 2 is 

not conditioned on the location of stop 1 and the location of stop 3 is not conditioned on the 

location of stop 2.  All three stops are estimated based on the tour origin and main destination 

zones and are otherwise assumed to be independent of each other.  This assumption greatly 

simplifies the process of identifying stop locations.  In all other respects, the stop location model 

uses the same procedures as the main destination choice model.  
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Figure 29: Atlanta Distribution of Intermediate Stops 
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Figure 30:  Birmingham Distribution of Intermediate Stops 

 

ii. Estimation: Number of Stops 

The available ARC and RPCGB network and zonal data and newly generated statistics 

available for destination choice estimation are the same as described in the Tour Generation 
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For the intermediate stop model, only I/I tour records were used, because only those records 
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- Industrial employment and total employment within a circle of 0.5, 1.0, 2.0, and 3.0 miles 

of the origin and destination zones (16 separate variables).  The idea is that if there is 

much employment near the tour origin or destination zones, there might be fewer 

intermediate stops. 

- Industrial employment, industrial employment density, and total employment within a 

circle whose diameter is the straight-line distance between the tour origin and 

destination zone centroids, centered on a point midway between those two centroids. 

- Industrial employment and total employment within a rectangle whose length is the 

straight-line distance between the tour origin and destination zone centroids and whose 

width is 30% of that distance. 

In these calculations, the inclusion of a zone’s employment in each variable’s calculation is 

based on the location of the zone’s centroid; it does not use a GIS-based calculation of the zone 

boundaries.  The calibration file consisted of the tour origin and main destination zones, the 

number of stops, several items from Table 19 and Table 21, and the items described above, for 

the origin and destination zones. 

For this model, a different approach was used in Birmingham than in Atlanta.  In Atlanta, one 

model was estimated for all tour types (I/I, external).  Further review in Birmingham suggested 

that a different approach would be more productive.  In Birmingham, the number of stops model 

was expanded into four separate models: 

1. I/I tours where the tour began and ended in the same zone (i.e., a complete round-trip 

tour) 

2. I/I tours where the tour began in one zone and ended in another 

3. I/X tours 

4. X/I tours 
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Each of these models was estimated in the same manner.  As with the main destination choice 

model, ALOGIT was used to estimate a multinomial model with seven choices of the number of 

intermediate stops: 0, 1, 2, 3, 4, 5, 6+.  The same criteria described above were used to 

evaluate the different models, which are listed in Table 40 (Atlanta) and Table 41 (Birmingham).  

The final model estimation reports are shown in Table 42(Atlanta) and Table 43 (Birmingham).  

The model includes bias coefficients on all alternatives except zero tours, for which the disutility 

is defined as zero.   
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Table 40: Atlanta: Number of Intermediate Stops Models 

 

Note: model shown in bold was selected. 

  

Run Variables Results rhosq(0) rhosq(C)

a first run: bias coeffs only 0.1482 0.0000

b add time helped a little 0.1502 0.0023

c add origin AT helped a little 0.1508 0.0031

d add dest AT helped a little 0.1512 0.0035

e try ind emp within 0.5 mi of origin didn't help; sign OK (< 0) 0.1512 0.0035

f try ind emp within 1.0 mi of origin no help; poor t; sign > 0 0.1512 0.0035

g try ind emp within 2.0 mi of origin no help; t OK; sign > 0 0.1512 0.0035

h try ind emp within 3.0 mi of origin some help; good t; sign > 0 0.1514 0.0038

i try tot emp within 0.5 mi of origin no help; t OK; sign < 0 0.1512 0.0035

j try tot emp within 1.0 mi of origin no help; poor t; sign > 0 0.1512 0.0035

k try tot emp within 2.0 mi of origin no help; t OK; sign > 0 0.1512 0.0035

l try tot emp within 3.0 mi of origin some help; good t; sign > 0; not quite as good as run h 0.1513 0.0037

m try ind emp within 0.5 mi of destination some help; good t; sign < 0 0.1515 0.0039

n try ind emp within 1.0 mi of destination some help; good t; sign < 0 0.1514 0.0037

o try ind emp within 2.0 mi of destination no help; barely good t; sign < 0 0.1512 0.0035

p try ind emp within 3.0 mi of destination no help; bad t; sign > 0 0.1512 0.0035

q try tot emp within 0.5 mi of destination some help; good t; sign < 0 0.1515 0.0038

r try tot emp within 1.0 mi of destination some help; good t; sign < 0 0.1513 0.0036

s try tot emp within 2.0 mi of destination no help; barely good t; sign < 0 0.1512 0.0035

t try tot emp within 3.0 mi of destination no help; bad t  0.1512 0.0035

u try ind empl in O-D circle some help; good t; sign < 0 0.1515 0.0039

v try tot empl in O-D circle same as model u 0.1515 0.0039

w try ind empl in O-D rectangle similar to model u; not quite as good 0.1515 0.0038

x try tot empl in O-D rectangle similar to model u; not quite as good 0.1514 0.0038

y try ind emp density in O-D circle no help 0.1512 0.0035

z try tot emp in orig zone no help 0.1512 0.0035

aa try tot emp in dest zone some help; good t; sign < 0 0.1515 0.0038

ab try ind emp in orig zone no help; barely good t; sign < 0 0.1512 0.0035

ac try ind emp in dest zone similar to model u 0.1515 0.0039

ad try pop in orig zone no help; bad t 0.1512 0.0035

ae try pop in dest zone no help; t OK 0.1512 0.0035

af combine models d, h, ac helped a little 0.1518 0.0042

ag model af + short trip dummy (15 min) helped a little; sign < 0 (good) 0.1526 0.0052

ah model ag +long trip dummy (45 min) helped a little; sign > 0 (good) 0.1527 0.0053
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Table 41:  Birmingham: Number of Intermediate Stops Models 

 

 

 

 

Note: models shown in bold were selected. 

Run Variables Results rhosq(0) rhosq(C)

Model 1: I/I tours where tour starts and ends in same zone

a bias t's OK, signs < 0 0.0701 0

b bias, atype t OK, sign < 0 0.0702 0.0001

c bias, atype, emp t low 0.0702 0.0001

d bias, atype, ln(emp) t low 0.0702 0.0001

e bias, atype, pop t OK, sign > 0 0.0728 0.0029

f bias, atype, ln(pop) t OK, sign > 0, not as good as pop 0.0708 0.0016

g bias, atype, pop, ind t low 0.0720 0.0029

h bias, atype, pop, ind emp 3 mi from zone t marginal 0.0721 0.0029

i bias, atype, pop, tot emp 3 mi from zone t OK, sign > 0, zonal AT drops out 0.0728 0.0037

j bias, pop, tot emp 3 mi from zone t's, signs OK 0.0728 0.0037

k bias, pop, tot emp 2 mi from zone t's, signs OK, a little better 0.0736 0.0046

l bias, pop, tot emp 1 mi from zone t's, signs OK, a little worse 0.0728 0.0029

m bias, pop, ind emp 2 mi from zone t's, signs OK, similar to model k 0.0740 0.0042

n bias, pop, tot emp 2 mi from zone, fix problem with ln(0) pop zones t's, signs OK 0.0741 0.0043

o bias, pop, tot emp 3 mi from zone t's, signs OK (not as good as model n, but other models use 3 mi variable, so easier to apply) 0.0735 0.0037

Model 2: I/I interzonal tours

a bias coeffs only t's OK 0.2422 0.0000

b bias, time t OK, sign > 0 0.2427 0.0007

c bias, time, origin AT t OK, sign < 0 0.2437 0.0021

d bias, time, orig AT, dest AT t OK, sign < 0 0.2441 0.0026

e bias, time, orig AT, dest AT, ind emp within 3 mi of origin t OK, sign > 0 0.2444 0.0030

f bias, time, orig AT, dest AT, tot emp within 3 mi of origin t OK, sign > 0, a little better than run e 0.2446 0.0032

g bias, time, orig AT, dest AT, tot emp within 2 mi of origin t low 0.2441 0.0026

h

bias, time, orig AT, dest AT, tot emp w/in 3 mi of orig, tot emp w/in 3 

mi of dest t OK, sign > 0 0.2447 0.0033

i

bias, time, orig AT, dest AT, tot emp w/in 3 mi of orig, tot emp w/in 3 

mi of dest; ind emp in OD circle t OK, sign < 0 (illogical) 0.2449 0.0036

j

bias, time, orig AT, dest AT, tot emp w/in 3 mi of orig, tot emp w/in 3 

mi of dest; tot emp in OD circle t OK, sign < 0 (illogical) 0.2449 0.0036

k

bias, time, orig AT, dest AT, tot emp w/in 3 mi of orig, tot emp w/in 3 

mi of dest, orig pop t low 0.2447 0.0033

l

bias, time, orig AT, dest AT, tot emp w/in 3 mi of orig, tot emp w/in 3 

mi of dest, dest pop t low 0.2447 0.0033

m

bias, time, orig AT, dest AT, tot emp w/in 3 mi of orig, tot emp w/in 3 

mi of dest, short trip (<15) t OK, sign < 0, dest AT drops out 0.2452 0.0040

n

bias, time, orig AT, tot emp w/in 3 mi of orig, tot emp w/in 3 mi of 

dest, short trip (<15), long trip (>45) t low 0.2452 0.0040

o

bias, time, orig AT, tot emp w/in 3 mi of orig, tot emp w/in 3 mi of 

dest, short trip (<15), dest Rural t marginal, sign < 0 0.2452 0.0041

p

bias, time, orig AT, tot emp w/in 3 mi of orig, tot emp w/in 3 mi of 

dest, short trip (<15), dest Urban t OK, sign < 0 0.2453 0.0042

q

bias, time, orig Urban, tot emp w/in 3 mi of orig, tot emp w/in 3 mi of 

dest, short trip (<15), dest Urban t OK, sign < 0 0.2453 0.0043

Model 3: I/X tours

a bias, time t OK, sign < 0 (illogical) 0.3460 0.0028

b bias, origUrban t marginal, sign > 0 0.3443 0.0001

c bias, origRural t OK, sign < 0  0.3450 0.0012

d bias, origRural, tot emp w/in 3 mi of origin t good, sign > 0, origRural drops out 0.3477 0.0053

e bias, tot emp w/in 2 mi of origin, drop origRural t good, sign > 0, a little better than model d 0.3464 0.0033

f bias, tot emp w/in 1 mi of origin t good, sign > 0, not as good as model e 0.3461 0.0028

g bias, ind emp w/in 3 mi of origin t good, sign > 0, better than model e 0.3489 0.0072

h bias, ind emp w/in 2 mi of origin t good, sign > 0, not as good as model g 0.3484 0.0063

i bias, ind emp w/in 3 mi of origin, orig zone pop t OK, sign < 0 0.3490 0.0073

j

bias, ind emp w/in 3 mi of origin, orig zone pop, short trip dummy 

(<15) t marginal, sign > 0 0.3491 0.0074

k

bias, ind emp w/in 3 mi of origin, orig zone pop, long trip dummy 

(>45) t good, sign < 0 (illogical); orig pop drops out 0.3499 0.0086

l bias, ind emp w/in 3 mi of origin, origin zone pop, time t good, sign < 0 (now OK); orig pop drops out 0.3505 0.0095

m bias, ind emp w/in 3 mi of origin, time t's OK 0.3505 0.0095

Model 4: X/I tours

a bias, time t OK, sign > 0 (different from I/X, but acceptable) 0.3536 0.0008

b bias, time, tot emp w/in 3 mi from dest t good, sign > 0 0.3564 0.0052

c bias, time, tot emp w/in 1 mi from dest t good, sign > 0, not as good as model b 0.3553 0.0035

d bias, time, ind emp w/in 3 mi from dest t good, sign > 0, slightly better than model b 0.3564 0.0052

e bias, time, ind emp w/in 3 mi from dest, dest pop t OK, sign < 0 0.3566 0.0055

f bias, time, ind emp w/in 3 mi from dest, dest pop, dest Urban t OK, sign < 0 0.3567 0.0056



161 
 

As for the results of the Atlanta model, the number of stops increases as the tour O-D time 

increases and even more if that time exceeds 45 min (the longtrip dummy variable), 

which is very logical. The number of stops also increases with increasing industrial 

employment within 3 miles of the origin zone, but the logic of this is less clear.  The number 

of stops decreases with reduced density at either end of the tour (i.e., increasing values of 

origAT and destAT). The number of stops decreases if the tour O-D distance is very short 

(under 15 min) and with increasing industrial employment in the tour destination zone. 

Table 42: Atlanta: Number of Intermediate Stops Selected Model 
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       Ga Tech Truck Tour Based Model: ARC: Number of Intermediate Stops 

  

Convergence achieved after   5 iterations 

  

Analysis is based on 78795 observations 

  

Likelihood with Zero Coefficients =-153327.9902 

  

Likelihood with Constants only    =-130605.7713 

  

Initial Likelihood                =-153327.9902 

  

Final value of Likelihood         =-129918.5142 

  

   "Rho-Squared" w.r.t. Zero      =  .1527 

  

   "Rho-Squared" w.r.t. Constants =  .0053 

 

ESTIMATES OBTAINED AT ITERATION  5 

 

Likelihood =-129918.5142 

 

            bias1      bias2      bias3      bias4      bias5      bias6 

  

 Estimate  -.1186     -.5151     -1.065     -1.499     -1.924     -.7177 

Std. Error   .588E-01   .591E-01   .596E-01   .604E-01   .615E-01   .592E-01 

"T" Ratio   -2.0       -8.7      -17.9      -24.8      -31.3      -12.1 

 

             time      origAT     destAT    orind30    dsindemp   shorttrp 

  

 Estimate   .4170E-02 -.6048E-01 -.8520E-01  .8661E-05 -.5848E-04 -.4471 

Std. Error   .574E-03   .743E-02   .724E-02   .923E-06   .492E-05   .269E-01 

"T" Ratio    7.3       -8.1      -11.8        9.4      -11.9      -16.6 

  

           longtrip 

  Estimate   .1239 

Std. Error   .274E-01 

"T" Ratio    4.5 
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The results of the four models of Birmingham case were mixed.  Travel time was significant in 

models #2 - #4, but had a negative coefficient in #3, meaning that a shorter tour had more 

stops.  It’s not clear if that is illogical.  Model #1 is inherently difficult to estimate, because the 

tour began and ended in the same zone.  No effort was made to analyze other stop locations, 

so the amount of data available to the logit estimation was limited.  For models #2 - #4, if the 

tour origin or destination zone had more activity (total employment, industrial employment, or 

population), there were more stops. If the tour destination was in an Urban zone, there were 

fewer stops.  For all models, the bias coefficients were relatively important and the ρ2(c) values 

were low, indicating that the independent variables did not explain a lot of the variation in 

number of stops. 

 

Table 43: Birmingham: Number of Intermediate Stops Selected Models 

Model #1 (I/I, intrazonal) 
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     Ga Tech/UAB Truck Tour Based Model: BMH: Number of Intermediate Stops #1 

  

  

Convergence achieved after   4 iterations 

  

Analysis is based on  9831 observations 

  

  

Likelihood with Zero Coefficients = -17614.7873 

  

Likelihood with Constants only    = -16380.0565 

  

Initial Likelihood                = -17614.7873 

  

  

Final value of Likelihood         = -16320.1921 

  

  

   "Rho-Squared" w.r.t. Zero      =  .0735 

  

   "Rho-Squared" w.r.t. Constants =  .0037 

 

ESTIMATES OBTAINED AT ITERATION  4 

 

Likelihood = -16320.1921 

 

            bias2      bias3      bias4      bias5      bias6     ortot30 

  

 Estimate  -1.166     -.9718     -1.607     -2.081     -.8485      .3705E-05 
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Std. Error   .481E-01   .468E-01   .519E-01   .578E-01   .460E-01   .626E-06 

"T" Ratio  -24.3      -20.8      -31.0      -36.0      -18.4        5.9 

 

           origPop 

  

 Estimate   .2481E-03 

Std. Error   .272E-04 

"T" Ratio    9.1 

 

Model #2 (I/I, interzonal) 
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     Ga Tech/UAB Truck Tour Based Model: BMH: Number of Intermediate Stops #2 

  

  

Convergence achieved after   5 iterations 

  

Analysis is based on 15974 observations 

  

  

Likelihood with Zero Coefficients = -31083.9687 

  

Likelihood with Constants only    = -23556.8824 

  

Initial Likelihood                = -31083.9687 

  

  

Final value of Likelihood         = -23455.9780 

  

  

   "Rho-Squared" w.r.t. Zero      =  .2454 

  

   "Rho-Squared" w.r.t. Constants =  .0043 

 

ESTIMATES OBTAINED AT ITERATION  5 

 

Likelihood = -23455.9780 

 

            bias1      bias2      bias3      bias4      bias5      bias6 

  

 Estimate  -1.292     -1.683     -2.371     -2.900     -3.355     -2.372 

Std. Error   .558E-01   .573E-01   .615E-01   .669E-01   .738E-01   .615E-01 

"T" Ratio  -23.1      -29.4      -38.6      -43.4      -45.5      -38.6 

  

  

             time     destUrb    origUrb    ortot30    dstot30    shortDum 

  

 Estimate   .4381E-02 -.2886     -.2893      .6039E-05  .3606E-05 -.2837 

Std. Error   .118E-02   .996E-01   .949E-01   .602E-06   .589E-06   .463E-01 

"T" Ratio    3.7       -2.9       -3.0       10.0        6.1       -6.1 

 

Model #3 (I/X) 
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     Ga Tech/UAB Truck Tour Based Model: BMH: Number of Intermediate Stops #3 

  

  

Convergence achieved after   6 iterations 

  

Analysis is based on 11513 observations 

  

  

Likelihood with Zero Coefficients = -22403.2635 

  

Likelihood with Constants only    = -14691.3693 

  

Initial Likelihood                = -22403.2635 
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Final value of Likelihood         = -14551.3690 

  

  

   "Rho-Squared" w.r.t. Zero      =  .3505 

  

   "Rho-Squared" w.r.t. Constants =  .0095 

  

ESTIMATES OBTAINED AT ITERATION  6 

 

Likelihood = -14551.3690 

 

            bias1      bias2      bias3      bias4      bias5      bias6 

  

 Estimate  -.9057     -1.565     -2.419     -2.885     -3.439     -2.771 

Std. Error   .560E-01   .595E-01   .684E-01   .766E-01   .907E-01   .743E-01 

"T" Ratio  -16.2      -26.3      -35.3      -37.7      -37.9      -37.3 

  

  

             time     orind30 

  

 Estimate  -.6564E-02  .3676E-04 

Std. Error   .796E-03   .262E-05 

"T" Ratio   -8.2       14.0 

 

Model #4 (X/I) 
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     Ga Tech/UAB Truck Tour Based Model: BMH: Number of Intermediate Stops #4 

  

  

Convergence achieved after   6 iterations 

  

Analysis is based on 22148 observations 

  

  

Likelihood with Zero Coefficients = -43098.0180 

  

Likelihood with Constants only    = -27881.3097 

  

Initial Likelihood                = -43098.0180 

  

  

Final value of Likelihood         = -27725.8154 

  

  

   "Rho-Squared" w.r.t. Zero      =  .3567 

  

   "Rho-Squared" w.r.t. Constants =  .0056 

 

ESTIMATES OBTAINED AT ITERATION  6 

 

Likelihood = -27725.8154 

 

            bias1      bias2      bias3      bias4      bias5      bias6 

  

 Estimate  -1.476     -2.157     -2.845     -3.534     -4.238     -3.513 

Std. Error   .459E-01   .482E-01   .526E-01   .605E-01   .740E-01   .602E-01 

"T" Ratio  -32.2      -44.7      -54.1      -58.4      -57.3      -58.4 

  

              time     destUrb    dsind30    destPop  

 Estimate   .4021E-02 -.2359      .2801E-04 -.5930E-04 

Std. Error   .600E-03   .907E-01   .194E-05   .148E-04 

"T" Ratio    6.7       -2.6       14.4       -4.0 
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iii. Estimation: Stop Locations 

The available ARC and RPCGB network and zonal data and newly generated statistics 

available for destination choice estimation are the same as described in the Tour Generation 

section.  As with the tour generation model, a Cube script was written to prepare the data for the 

estimation process. 

The estimation data for this model used only the I/I records, since there was insufficient 

confidence in the accuracy of the external station geocoding of the external tour records.  For 

each I/I tour record with at least one stop, a record was created with the origin zone, main tour 

destination zone, and one stop zone.  So if a tour had three stops, three separate records were 

created.  There are 111,424 I/I tour records, of which 79,869 had at least one stop.  This 

produced 333,899 stop location records.  If the tour origin zone or a selected stop zone had no 

employment, the record was omitted.  This resulted in 301,249 usable records. As for 

Birmingham, there are 26,606 I/I tour records, of which 18,242 had at least one stop.  This 

produced 45,906 stop location records. 

As with the main destination choice model, a process must be used to limit the choice of 

candidate destination zones.  The same procedure described above for the main destination 

choice model to implement importance sampling with replacement was used.  It is assumed that 

in the context of selecting intermediate stop locations, fewer alternative zones would be 

considered (compared to the selection of the tour main destination zone).  Thus, only 10 

alternatives were used for estimating this model: the chosen stop zone and nine other selected 

stop zones. 

In addition to the independent data listed in Table 19, three new variables were created to 

describe the detour time.  In intermediate stop modelling, detour time is the difference between 

the network time between tour origin and main destination zones, and the network time for the 
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origin – stop – destination tour.  In addition, the origin – stop and stop – destination travel times 

were output to the estimation file. 

The candidate models for Atlanta are listed in Table 44.  The final model, shown in Table 45, 

has reasonable variables, logical coefficient signs, and good t scores.  The coefficients seem 

reasonable: 

- The detour variable is very strong and the negative coefficient means that truck drivers 

try to minimize their detour time, which seems reasonable.  In addition, the positive 

shortDum variable (1 if the detour time is under 5 min) gives an additional boost to zones 

with a very short detour time. 

- The positive tzone coefficient means that truck zones are more likely to be stops. 

- The positive atype coefficient means that less developed zones (higher numerical area 

type) are more likely to be stops.  This may seem counterintuitive, but it could mean that 

highly developed areas are too congested to be considered as intermediate stops, or it 

could be the “competitive” effect mentioned above (a zone in a developed area is itself 

less likely to be selected because it is competing with other nearby developed zones).  

This effect is supported by the negative coefficient on the number of jobs accessible 

within 30 min (accemp30). 

- The size variables are non-industrial employment, industrial employment (more 

important), and population (not too important). 
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Table 44: Atlanta: Intermediate Stop Location Models 

 

Run Variables Results rhosq(0)

a first run: size: non-ind emp, ind emp, pop; detour tm all signs, t's OK 0.8750

b add stop AT AT has a high t; sign > 0 0.8943

c add truck zone small improvement; good t; sign > 0 0.8952

d add acc emp 30 some improvement; good t; sign < 0 0.9063

e model c + acc ind 30 almost no change; t low but OK; sign > 0 0.8953

f model c + tot emp acc (continuous function) estimation failed

g model c + ind emp acc (continuous function) tiny improvement; t OK; sign < 0, which seems illogical 0.8958

h model c + hh acc (continuous function) some improvement; good t; sign < 0 0.9011

i model d + short detour dummy (< 5 min) some improvement; good t; sign > 0 0.9065

j model i + dist to CBD tiny improvement; t OK; sign > 0; t on pop becomes insignificant 0.9070

k model j + orig-stop time (drop Pop from Size) estimation failed

l model j + stop-dest time estimation failed

m model j + Size = 4 individual elements of industrial employment not as good; t's and signs OK 0.9017

n model j + drop Pop from Size estimation failed

o model j + Size = 3 groups of ind emp estimation failed

p model j + Size = 3 different groups of ind emp OK 0.9016

q model I + dist to cordon similar to run j; t on pop is small (1.5) 0.9069

r model q + drop Pop estimation failed
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Table 45: Atlanta: Intermediate Stop Location Selected Model 

     Ga Tech Truck Tour Based Model: ARC: Intermediate Stop Location Model 

  

Convergence achieved after  11 iterations 

  

Analysis is based on301249 observations 

  

Likelihood with Zero Coefficients =-693651.4567 

  

Likelihood with Constants only    =       .0000 

  

Initial Likelihood                = -94544.4092 

  

Final value of Likelihood         = -64886.9670 

 

   "Rho-Squared" w.r.t. Zero      =  .9065 

  

   "Rho-Squared" w.r.t. Constants =  .0000 

 

ESTIMATES OBTAINED AT ITERATION 11 

 

Likelihood = -64886.9670 

 

            detour     tzone      atype     accemp30   shortDum   nonIndEmp   

  

 Estimate  -.7887E-02  .5358      .3254     -.1080E-05  1.742      1.000 

Std. Error   .224E-03   .167E-01   .760E-02   .111E-07   .124       .000 

"T" Ratio  -35.3       32.0       42.8      -97.5       14.0         .0 

 

            indEmp      pop 

  

 Estimate   1.623     -.2785 

Std. Error   .476E-01   .494E-01 

"T" Ratio   34.1       -5.6 

 

For Birmingham, as with the number of stops models, the estimation of the stop location model 

was split into two parts: model #1, where the tour begins and ends in the same zone, and model 

#2, where it doesn’t. 

The candidate models for Birmingham are listed in Table 46.  The final models, shown in Table 

47, have reasonable variables, logical coefficient signs, and good t scores.  The coefficients 

seem reasonable: 
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- The detour variable was not useful.  This is an odd result that runs counter to theory 

and the experience in Atlanta.  In the round-trip model, the stop-destination time was 

relevant and in the interzonal model the origin-stop and stop-destination times were 

relevant, although the origin-stop time had a positive coefficient, which seems odd. 

- The positive tzone coefficient means that truck zones are more likely to be stops, which 

makes sense. 

- The positive atype coefficient means that less developed zones (higher numerical area 

type) are more likely to be stops.  This may seem counterintuitive, but it could mean that 

highly developed areas are too congested to be considered as intermediate stops, or it 

could be the “competitive” effect mentioned above (a zone in a developed area is itself 

less likely to be selected because it is competing with other nearby developed zones).  

This effect is supported by the negative coefficient on the number of jobs accessible 

within 30 min (accemp30). 

- The size variables are non-industrial employment, industrial employment (more 

important), and population (not too important). 

- Distance to the CBD was significant with a positive coefficient, meaning that zones 

farther from the CBD were more likely to be stops. 

- A short trip dummy (origin – stop time < 5 min) was significant with a positive coefficient, 

meaning that zones very close to the origin are more likely to be stops. 
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Table 46:  Birmingham: Intermediate Stop Location Models 

 

 

Table 47:  Birmingham: Intermediate Stop Location Selected Models 

Model #1 Round-Trip Tours 
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  Ga Tech/UAB Truck Tour Based Model: BMH: Intermediate Stop Location: Intrazonal 

  

Convergence achieved after   8 iterations 

Analysis is based on 25796 observations 

  

Likelihood with Zero Coefficients = -59397.4851 

Likelihood with Constants only    =       .0000 

Initial Likelihood                = -47627.5828 

Final value of Likelihood         = -33785.5379 

  

   "Rho-Squared" w.r.t. Zero      =  .4312 

  

   "Rho-Squared" w.r.t. Constants =  .0000 

 

ESTIMATES OBTAINED AT ITERATION  8 

 

Likelihood = -33785.5379 

 

            timeIK     tzone      atype     distcbd    accEmp30   shortDum 

  

 Estimate  -.4873E-02  .6641      .3545      .5297E-01 -.1439E-05  .2272 

Std. Error   .137E-02   .246E-01   .836E-02   .237E-02   .169E-07   .247E-01 

"T" Ratio   -3.6       26.9       42.4       22.3      -85.0        9.2 

  

  

           longDum    nonIndEmp  indEmp      pop 

Run Variables Results rhosq(0)

Model 1: I/I tours where tour starts and ends in same zone

a first run: size: non-ind emp, ind emp, pop; timeIK t OK, sign > 0 (illogcal?  But maybe OK) 0.2884

b Size: non-ind emp, ind emp, pop; timeKJ t OK, sign > 0 (illogcal?  But maybe OK) 0.2879

c Size: non-ind emp, ind emp, pop; timeIK, truck zone t OK, sign > 0  0.3065

d Size: non-ind emp, ind emp, pop; timeIK, truck zone, stop AT t OK, sign > 0 0.3604

e Size: non-ind emp, ind emp, pop; timeIK, truck zone, stop AT, acc emp 30 t OK, sign < 0 0.4236

f Size: non-ind emp, ind emp, pop; timeIK, truck zone, stop AT, acc ind 30 t OK, sign < 0, not as good as model e 0.4024

g Size: non-ind emp, ind emp, pop; timeIK, truck zone, stop AT, acc emp 30, short trip dummy (< 5) t OK, sign > 0 0.4262

h model g + dist to CBD t OK, sign > 0 0.4305

i model h but replace stop AT with urban (1-3) and rural (8,9) dummies t's OK, urban sign < 0, rural sign > 0, but not as good as model h 0.4239

j Size: non-ind emp, ind emp, pop; timeIK, tzone, stop AT, accemp30, short dum (< 5), long dum (>30) t's OK 0.4312

Run Variables Results rhosq(0)

Model 2: I/I interzonal tours

a first run: size: non-ind emp, ind emp; detour time t OK but sign > 0 (illogical) 0.2420

b Size: tot emp; detour time t OK but sign > 0 (illogical) -0.2227

c Size: tot emp; timeIK t OK but sign > 0 (illogical) -0.1905

d Size: tot emp; timeKJ t OK, sign < 0 -0.1992

e Size: ind emp; timeKJ t OK, sign < 0 -0.1261

f Size: ind, non-ind emp; timeKJ t OK, sign < 0 0.2322

g Size: ind, non-ind emp; timeKJ, timeIK t OK, sign IK > 0, may be OK since sign KJ < 0 0.3170

h Size: ind, non-ind emp; timeKJ, timeIK, truck zone t OK, sign > 0 0.3172

i Size: ind, non-ind emp; timeKJ, timeIK, truck zone, stop AT t OK, sign > 0 0.4175

j Size: ind, non-ind emp; timeKJ, timeIK, truck zone, stop AT, short detour dummy (< 5 min) t OK, sign > 0 0.4240

k model j + add pop to Size t OK, sign > 0 0.4826

l model j + add pop to Size; acc emp 30 t OK, sign < 0 0.5308

m model j + add pop to Size; acc ind 30 t OK, sign < 0, not as good as model l 0.5134

n model j + add pop to Size; tot emp acc (emp/t^2) t OK, sign < 0, not as good as model l 0.4931

o model j + add pop to Size; HH acc t OK, sign < 0, not as good as model l 0.4998

p model j + add pop to Size; acc emp 30, dist to cbd t OK, sign > 0, small improvement 0.5309

q model j + add pop to Size; acc emp 30, dist to cordon t low 0.5308
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 Estimate   .3807      1.000      3.510      .6068 

Std. Error   .423E-01   .000       .128       .122 

"T" Ratio    9.0         .0       27.3        5.0  

 

Model #2 Interzonal Tours 
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  Ga Tech/UAB Truck Tour Based Model: BMH: Intermediate Stop Location: Interzonal 

  

  

Convergence achieved after   6 iterations 

Analysis is based on 20110 observations 

  

Likelihood with Zero Coefficients = -46304.9862 

Likelihood with Constants only    =       .0000 

Initial Likelihood                = -32012.5519 

  

Final value of Likelihood         = -21720.8936 

  

  

   "Rho-Squared" w.r.t. Zero      =  .5309 

  

   "Rho-Squared" w.r.t. Constants =  .0000 

 

ESTIMATES OBTAINED AT ITERATION  6 

 

Likelihood = -21720.8936 

 

            timeIK     timeKJ     tzone      atype     distcbd    accEmp30 

  

 Estimate   .5842E-01 -.6678E-01  .8545      .4696      .1135E-01 -.1379E-05 

Std. Error   .139E-02   .133E-02   .326E-01   .111E-01   .352E-02   .211E-07 

"T" Ratio   41.9      -50.4       26.2       42.4        3.2      -65.2 

  

  

           shortDum   nonIndEmp  indEmp      pop 

  

 Estimate   .5966      1.000      1.423     -1.103 

Std. Error   .265E-01   .000       .845E-01   .765E-01 

"T" Ratio   22.5         .0       16.8      -14.4 

 

 

iv. Validation 

Both these models were applied, in sequence, to the estimated tour records.  Initial examination 

indicated that the model was estimating too few stops for I/I tours and too many stops for 

external tours for Atlanta, and the I/X model (#3) was estimating too many stops for 

Birmingham.  Thus, during validation, an additional set of bias coefficients were added, stratified 

by I/I vs. external, as shown in Table 48. 
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Table 48: Atlanta: Number of Stops Added Bias 

Number of Stops I/I External 

1 0.32 0.02 

2 0.24 -0.07 

3 0.39 -0.17 

4 0.47 -0.35 

5 0.55 -0.49 

6+ 0.78 -1.24 

 

Table 49:  Birmingham: Number of Stops Added Bias (I/X model) 

Number of Stops Change in Bias 

1 -0.3 

2 -0.2 

3 -0.2 

4 -0.2 

5 -0.2 

6+ -0.2 

 

The resulting distribution of tours by number of average stops was closer to the observed, as 

shown in Table 50 (this includes internal and external but not through tours). 
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Table 50: Atlanta: Tours by Stops 

Number of Stops Observed Estimated 

0 34.4% 35.4% 

1 22.8 22.6 

2 13.9 14.0 

3 8.7 8.2 

4 5.3 5.2 

5 3.6 3.4 

6+ 11.3 11.2 
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Table 51:  Birmingham: Tours by Stops 

Model Type: 1: Round-Trip 2: Interzonal 3: I/X 4: X/I 

Number of 

Stops 

Obs Est Obs Est Obs Est Obs Est 

0   50.4% 50.7% 58.2% 54.6% 58.6% 61.0% 

1 32.3% 31.2% 18.5 18.7 19.8 20.8 19.9 18.4 

2 14.6 14.5 12.6 11.9 10.3 11.5 10.1 9.9 

3 17.8 18.2 6.3 6.4 4.4 4.7 5.1 4.5 

4 9.5 9.3 3.7 3.7 2.7 3.0 2.5 2.4 

5 5.9 6.0 2.3 2.3 1.6 1.9 1.3 1.3 

6+ 19.9 20.8 6.2 6.3 3.0 3.6 2.5 2.5 

 

The stop location model can be evaluated by comparing the observed and estimated trip length 

frequency distributions and the mean values.  This uses the trip times, which are the times from 

the tour origin to the first stop, between stops, and from the last stop to the tour destination.  

This is shown in Figure 31.  The observed mean is 34.07 min and the estimated mean is 34.34 

min. 
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Figure 31: Atlanta: Trip Length Frequency Distributions 

 

 

Time Period of Tour Starts 

i.  Model Structure 

The time of day process models the time period of the start of the tour.  This uses the four time 

periods currently used: AM peak = 6 – 10 am, Midday = 10a – 3 p, PM peak = 3 – 7 pm, Night = 

7p – 6am (for Atlanta model); AM peak = 6 – 9 am, Midday = 9a – 3 p, PM peak = 3 – 6 pm, 

Night = 6p – 6a (for Birmingham model).  The entire tour is assigned to a period, based on the 

start time.  A logit model is used with four alternatives. 

At the start of this effort, it was not clear which of the available independent variables would (or 

should) influence the choice of the tour start time period.  The worst case would be a model that 
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consisted only of bias coefficients, i.e., a fixed time split, uninfluenced by any other variables.  

However, it seemed reasonable to hypothesize that geographic location (the “rolling peak”), trip 

length, and other location-related variables might play a role. 

 

ii. Estimation 

The available ARC and RPCGB network and zonal data and newly generated statistics 

available for destination choice estimation are the same as described in sections 3.ii and 3.iii.  

As with the other models, a Cube script was written to prepare the data for the estimation 

process.  Only the I/I tour records were used for model estimation, because most of the 

independent variables of interest are available only for internal zones.  This resulted in 111,424 

(Atlanta) and 26,606 (Birmingham) observations.  As is standard practice in logit modelling, one 

alternative (AM peak) is required to have a utility of zero. 

As with the number of intermediate stops model, ALOGIT was used to estimate a multinomial 

model with four choices of time period: AM, MD, PM, NT.  The same criteria described above 

were used to evaluate the different models, which are listed in Table 52.  The final model 

estimation report is shown in Table 53.  The model includes bias coefficients on all alternatives 

except AM peak, for which the utility is defined as zero.   
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Table 52: Atlanta: Time Period Models 

 

Note: model shown in bold was selected.

Run Variables Results rhosq(0)

a bias only OK 0.0576

b add origin AT helped a little; t ok; sign < 0 0.0577

c try originUrban, originRural dummies a little better; t's ok; urb>0, rur<0 0.0578

d add destUrban, destRural dummies no help; t's low 0.0578

e try destUrban, destRural dummies alone (without origin dummies) no help; t's low 0.0576

f model c + origin, dest accessibility a little better; t's ok; both signs > 0 0.0583

g model f + orig dist to cbd some help; t's ok; sign < 0 0.0589

h model f + dest dist to cbd better; t ok; sign < 0; but destAcc t drops too low 0.0592

i model f + orig dist to cordon some help; t's ok; sign > 0 0.0586

j model f + dest dist to cordon better; t ok; sign > 0; but destAcc t drops too low 0.0588

k model g but replace accessibility with tot emp density nope; both t's too low 0.0586

l model g but replace accessibility with ind emp density nope; orig t too low 0.0587

m model g but replace accessibility with pop density nope; orig t too low 0.0588

n model g but add dest pop density better; all t's ok 0.0590

o model n but put system variables on 'util1' doesn't work; all system coeffs are zero 0.0576

p model n but use different coeffs on system variables by period better but some t's are too low 0.0605

q model p + consolidate some coeffs better but some t's are too low 0.0594

r model p + consolidate more coeffs better but some t's are too low 0.0593

s model r + time better; time is significant 0.0674

t model s + consolidate more coeffs better but origUrb t is too low 0.0683

u model t but drop origUrb all t's OK 0.0683
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Table 53: Atlanta: Time Period Selected Model 

Hague Consulting Group                                                   Page  5 

ALOGIT Version 3F/2 (602)                                  13:36:44 on 30 Dec 13 

  

               Ga Tech Truck Tour Based Model: ARC: Time Period 

  

Convergence achieved after   4 iterations 

  

Analysis is based on 111424 observations 

  

  

Likelihood with Zero Coefficients =-154466.4629 

  

Likelihood with Constants only    =-145572.2528 

  

Initial Likelihood                =-154466.4629 

  

Final value of Likelihood         =-143914.3225 

 

   "Rho-Squared" w.r.t. Zero      =  .0683 

  

   "Rho-Squared" w.r.t. Constants =  .0114 

 

ESTIMATES OBTAINED AT ITERATION  4 

 

Likelihood =-143914.3225 

 

            bias2      bias3      bias4       time     origRur2   origAcc2 

  

 Estimate   .4881     -.6986      .5358      .1514E-01 -.7226E-01 -.3543E-07 

Std. Error   .359E-01   .390E-01   .354E-01   .314E-03   .222E-01   .126E-07 

"T" Ratio   13.6      -17.9       15.2       48.3       -3.2       -2.8 

 

           destAcc2   destAcc3   destAcc4   origCBD2   origCBD3   origCBD4 

  

 Estimate   .1246E-06  .9450E-07  .1194E-06 -.1947E-01 -.8030E-02 -.1432E-01 

Std. Error   .127E-07   .154E-07   .125E-07   .693E-03   .803E-03   .673E-03 

"T" Ratio    9.8        6.1        9.6      -28.1      -10.0      -21.3 

 

          destPden2  destPden3 

  

 Estimate   .4504E-01  .3828E-01 

Std. Error   .494E-02   .467E-02 

"T" Ratio    9.1        8.2 

 

Unlike the other logit models, in which the same coefficients were used on all alternatives, this 

model used different coefficients by alternative for some variables.  The findings include: 

- Somewhat surprisingly, tour O-D direct travel time turned out to be an especially 

significant variable.  Longer travel time tends to push tours out of the AM peak. 
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- If the tour origin is rural (area type = 5-7) or is farther from the CBD, the tour is more 

likely to start in the AM peak.  This makes sense in the context of such tours being 

longer and thus having to start earlier. 

- If the origin is more accessible to employment, the tour is more likely to start in the AM 

peak.  If the tour main destination is more accessible to employment or has a higher 

population density, the tour is less likely to start in the AM peak.  These effects are less 

clear. 

 

Table 54:  Birmingham: Time Period Models 

 

Note: model shown in bold was selected. 

 

 

  

Run Variables Results rhosq(0) rhosq(c)

a bias only OK 0.1179

b bias, origUrb (pk,op), origRur (pk,op) t's OK exc origUrb op 0.1187 0.0009

c bias, destUrb (pk,op), destRur (pk,op) t's OK only on destRur op 0.1183 0.0004

d bias, origUrb pk, destRur op t's OK 0.1183 0.0005

e bias, origUrb pk, destRur op, time t's OK 0.1247 0.0077

f bias, origUrb pk, destRur op, time, orig emp den t's OK 0.1252 0.0082

g bias, origUrb pk, destRur op, time, dest emp den t's OK, not as good as model f 0.1250 0.0080

h bias, origUrb pk, destRur op, time, orig ind den t's OK, better than model f 0.1258 0.0090

i bias, origUrb pk, destRur op, time, dest ind den t's OK, better than model f 0.1261 0.0092

j bias, origUrb pk, destRur op, time, dest ind den, orig pop den t low on orig pop den pk 0.1264 0.0096

k bias, origUrb pk, destRur op, time, dest ind den, dest pop den t low on dest pop den pk, destRur op 0.1264 0.0096

l bias, origUrb pk, time, dest ind den, dest pop den op all t's OK 0.1264 0.0096

m bias, origUrb pk, time, dest ind den, dest pop den op, dest dist to CBD t's OK 0.1281 0.0116

n bias, origUrb pk, time, dest ind den, dest pop den op, dest dist to CBD, orig acc new t's OK, dest ind den pk drops out 0.1285 0.0120

o bias, origUrb pk, time, dest ind den, dest pop den op, dest dist to CBD, dest acc new t's OK, dest ind den op drops out 0.1287 0.0122

p bias, origUrb pk, time, dest pop den op, dest dist to CBD, dest acc all t's OK 0.1283 0.0118

q bias, origUrb pk, time, dest pop den op, dest dist to CBD, dest acc, intra flag all t's OK 0.1552 0.0423
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Table 55:  Birmingham: Time Period Selected Model 

Hague Consulting Group                                                   Page  4 

ALOGIT Version 3F/2 (602)                                   9:26:11 on 18 Apr 14 

  

               Ga Tech/UAB Truck Tour Based Model: BMH: Time Period 

  

Convergence achieved after   5 iterations 

  

Analysis is based on 26606 observations 

  

  

Likelihood with Zero Coefficients = -36883.7478 

  

Likelihood with Constants only    = -32534.5400 

  

Initial Likelihood                = -36883.7478 

  

  

Final value of Likelihood         = -31159.5792 

  

  

   "Rho-Squared" w.r.t. Zero      =  .1552 

  

   "Rho-Squared" w.r.t. Constants =  .0423 

 

ESTIMATES OBTAINED AT ITERATION  5 

 

Likelihood = -31159.5792 

 

            bias2      bias3      bias4     origUrbP   destAccP   destAccO 

  

 Estimate   1.307      .4870      1.611      .2544      .2365E-06  .2290E-06 

Std. Error   .679E-01   .729E-01   .675E-01   .985E-01   .402E-07   .329E-07 

"T" Ratio   19.2        6.7       23.9        2.6        5.9        7.0 

  

  

           intraMD    intraPN    destCBDp   destCBDo  destPdenO    timePM 

  

 Estimate  -.1951     -1.393     -.2143E-01 -.1224E-01  .3970E-01  .1234E-01 

Std. Error   .573E-01   .580E-01   .353E-02   .274E-02   .989E-02   .190E-02 

"T" Ratio   -3.4      -24.0       -6.1       -4.5        4.0        6.5 

  

  

            timeOP 

  

 Estimate   .6545E-02 

Std. Error   .170E-02 

"T" Ratio    3.8 

 

The findings for Birmingham model include: 

- If the tour origin is urban (area type = 1-3), the tour is more likely to start in the peak 

periods.  This may have to do with the business hours of establishments in urban areas. 

- The longer the tour travel time, the less likely the tour is to start in the AM peak.  This is 

logical as a response to avoiding congestion. 
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- If the tour main destination is more accessible to employment or has a higher population 

density, the tour is less likely to start in the AM peak.  These effects are less clear, but 

are similar to what was found in Atlanta. 

- If the tour is round-trip, it is slightly less likely to start in Midday and a lot less likely to 

start in the PM peak or Night.  This may have something to do with the nature of local 

delivery schedules. 

 

iii. Validation 

The model was applied to the estimated set of tours.  Initial examination of the split of tours by 

period (internal + external) indicated a slight difference from the observed data.  The solution 

was to modify the bias coefficients for the midday, PM, and night periods slightly until the 

observed shares were matched, which resulted in the comparison shown in Table 56. 

Table 56: Atlanta: Tours by Period 

Period Observed Estimated 

AM 16.65% 16.89% 

MD 29.78 29.70 

PM 15.25 15.15 

NT 38.32 38.26 
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Table 57: Birmingham: Tour Starts by Period 

Period Observed Estimated 

AM 8.4% 8.3% 

MD 35.6 35.3 

PM 14.0 14.2 

NT 42.0 42.2 

 

Trip Accumulator 

The time of day step is the final logit model in the process.  Its output is a set of tour records (I/I, 

I/X, X/I) with the tour origin, main destination, number of stops (0-6), list of up to 6 stop 

locations, and the time period (1-4). The next step in the process is a trip accumulator.  This 

step breaks up the tour records into individual trip records (origin – stop, stop – stop, stop – 

destination), in preparation for assignment.  Separate trip tables by period are then built.  These 

are aggregated to daily trips for the purpose of computing an estimated daily trip length 

frequency distribution. 

The trip accumulator step includes a step to forecast X/X tours.  The tour generation step 

described above also outputs a set of X/X growth factors, which are computed so that the sum 

of the estimated external and through trip ends at each external station matches the input 

station total.  The cordon total truck volume by station and a matrix of 2010 X/X tours are basic 

inputs.  The forecasted change in external tours (I/X + X/I) is based mainly on the change in 

employment in the modelled area.  The X/X growth factors are computed in order to make the 

forecasted X/X tours consistent with the forecasted external tours and the input cordon totals.  
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In this step, these computed X/X growth factors are used to Fratar the base (2010) X/X tour 

matrix and split those tours by time period. 

 

Traffic Assignment 

i. Atlanta Model 

The research team integrated the tour-based truck model with the existing ARC trip-based 

assignment methodology.  The first step in the ARC process is to separate truck trips by 

whether they begin or end within the I-285 loop (“The Perimeter”).  Then, the passenger car 

trips are extracted from a run of the ARC model and both sets of trips are assigned 

simultaneously by time period. 

The ARC assignment begins with a separate step to load the X/X trips (passenger car and 

truck) using a one-pass all-or-nothing assignment.  This assumes that X/X trips use the fastest 

time paths, independent of any congestion effects.  The second step starts with the output of the 

X/X assignment, treating the X/X volumes as a “pre-load” and then assigns the auto and truck 

trips in a multi-class assignment with the equilibrium volume averaging technique, using the bi-

conjugate Frank-Wolfe algorithm as implemented in Cube.  Separate paths are built and loaded 

for SOV, HOV-2, HOV-3, HOV-4+, and Trucks.  The “non-I-285” trucks are loaded on paths that 

do not go inside the Perimeter and the other trucks are loaded on paths that do.  For the 

purposes of computing a volume/capacity ratio for the capacity restraint process, the truck 

volume is multiplied by 2.0 to reflect the greater effect of heavy trucks on congestion (greater 

vehicle length, slower acceleration/deceleration).  

ii. Birmingham Model 

The team also integrated the tour-based truck model with the RPC trip-based assignment 

methodology.  This was complicated by the fact that, as noted above, the RPC model is in the 

midst of a change.  The new process assigns trips by time period and makes a number of other 
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changes from the previous assignment protocol.  For this study, the team created a “hybrid” 

assignment script that is based in part on the old and new procedures.   

In addition, the team created a 2010 auto-only trip table by time of day.  This was done via the 

following steps: 

- Interpolate between RPC 2008 and 2012 trip tables to get 2010. 

- Removed the RPC truck (and taxi) I/I trip tables. 

- For external (I/X + X/I) and through (X/X) trips, remove an average of 10.7% of the 

vehicle trips, which is the estimated truck share of traffic at the cordon, based on ALDOT 

counts.  This percentage varies by external station. 

- Apply the new time of day splits, based on data provided by UAB. 

The hybrid assignment protocol uses separate assignment steps by time period.  The period 

capacity was computed as 9% of the daily capacity, multiplied by the following factors: 

AM=2.22, MD=5.16, PM=2.92, NT=3.28.  Those are based on hourly count data, are intended 

to reflect peaking that occurs within each time period, and were provided by UAB.  O/D paths 

are based on an impedance cost that includes time and toll, and accounts for the value of time.  

In early versions, link distance and the vehicle operating cost were also considered, but these 

were later omitted to produce more accurate assignments.  RPC’s link usage restrictions and 

occupancy classes were used (SOV, HOV-2, HOV-3, TRK) and UAB’s newer volume/delay 

functions were used.  The Cube standard equilibrium volume averaging method was used with 

MAXITERS=30, and Relative Gap=0.005.  Calibration runs included the use of Cube Cluster for 

multiprocessing, with 4 processors.  The RPC auto-only trips (SOV, HOV-2, HOV-3) are 

assigned along with trucks, in order to produce a more realistic capacity constraint condition. 
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Model Application 

The entire truck model (including assignment) is applied using a single Cube script (Cube’s 

Application Manager is not used).  Table 58 lists the steps that are used.  The main part of the 

model is applied in a series of MATRIX steps that read and write tour-related records.  Due to 

the use of Monte Carlo simulation, a key feature of the script is the use of Cube’s (pseudo-) 

random number generator.  As part of each logit step, the Cube RANDSEED function is applied 

once, using a statement like 

  if (reci.recno == 1) q = randseed(100) 

Setting the random number seed to the arbitrary value of 100 at the start ensures that the 

results are reproducible.  True stochastic modelling could be achieved by applying the model 10 

or 100 times, varying the random number seed differently each time.  This would produce a 

variety of answers, which could be used to analyze the mean and variance of the model’s 

responses.  However, in the typical real-world application of such models, such stochastic 

modelling is rarely done. 

The model was developed using Cube Voyager version 6.1.0 and should run with Voyager 

version 6 or later. 

Before running the model, the input data must be set up in directories as follows: 

\scenario1 

 \inputs 

  input files 
\scenario2 

 \inputs 

  input files 
\model.ATL (in the case of Birmingham: \model.BMH) 

 model files 
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Table 58: Atlanta: Model Application Steps 

Step Program Function 

1 MATRIX Calculate zonal accessibility values 

2 MATRIX Calculate zonal distance to CBD 

3 MATRIX Calculate zonal distance to nearest external station 

4 MATRIX Output base (2010) X/X trip ends 

5 MATRIX Tour generation model 

6 MATRIX Tour main destination choice model (separately for I/I and X/I) 

7 MATRIX Tour main destination choice model (I/X) 

8 MATRIX Tour length frequency distributions 

9 SQZ Compress tours to districts for reporting 

10 MATRIX Intermediate stop model 

11 MATRIX Time of day model 

12 MATRIX Trip accumulator 

13 MATRIX Sort trip records 

14 MATRIX Trip length frequency distributions 

15 FRATAR Growth factor X/X trips 

16 MATRIX Separate truck and E/E (X/X) trips 

17 HIGHWAY E/E pre-load by period (4 steps) 

18 NETWORK Round/rename X/X volumes by period (4 steps) 

19 HIGHWAY Highway assignment by period (4 steps) 

20 NETWORK Round/rename volumes by period (4 steps) 
 

 

Table 59: Birmingham: Model Application Steps 

Step Program Function 

1 MATRIX Calculate zonal accessibility values 

2 MATRIX Calculate zonal distance to CBD 

3 MATRIX Calculate zonal distance to nearest external station 

4 MATRIX Output base (2010) X/X trip ends 

5 MATRIX Tour generation model 

6 MATRIX Tour main destination choice models (separately for I/I and X/I) 

7 MATRIX Tour main destination choice model (I/X) 

8 MATRIX Intermediate stop models (separately by 4 tour types) 

9 MATRIX Time of day model 

10 MATRIX Trip accumulator 

11 MATRIX Sort trip records 

12 MATRIX Trip length frequency distributions 

13 FRATAR Growth factor X/X trips 

14 MATRIX Tour length frequency distributions 

15 SQZ Compress tours to districts and report 

16 MATRIX Separate truck and E/E (X/X) trips 

17 HIGHWAY Highway assignment by period (4 steps) 

18 NETWORK Round/rename volumes by period (4 steps) 
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The “\scenario” directories can be named anything the user likes, but the “\model.ATL” 

(“\model.BMH”) directory and “\inputs” subdirectories must have those particular names.  For 

this project, two scenarios were run, “2010” and “2040” (future scenario for Birmingham is 

“\2035”).  In “\model.ATL” (and “\model.BMH”) are stored those files that do not change by 

scenario.   

The necessary files and their derivation for Atlanta are shown in Table 60.  Note that many of 

the ARC model files are specifically identified with a two-digit year code embedded in the file 

name (e.g., FF10HWY.SKM, representing 2010).  In order to make this model’s code more 

generic (non-year-specific), these files have been re-named.  So in order to run the current 

model script as is, the user must first run the ARC model according to the instructions for that 

model, find the files shown in Table 60, as specified in the Source column, re-name them as 

specified in the New File Name column, and copy them as shown in the New Location column. 

The necessary files and their derivation for Birmingham are shown in Table 60.  Note that in the 

RPC’s older zonal socioeconomic file (SEDATA2.DBF), some of the fields are specifically 

identified with a two-digit year code embedded in the field name (e.g., POP12 for 2012, POP35 

for 2035).  The truck model script includes a “key” named YR that must be set to the last two 

digits of the forecast year.  If the data structures for the new RPC model are different, the main 

model script may need to be modified accordingly. 

Once the input files are in place, running the model is very simple.  The entire model is in one 

Cube script.  To run the model, open this script in a Cube window, press the F9 key, enter the 

name of the directory where the inputs are located (the “\scenario” directory) in the “Work 

Directory” dialog box, and press the Start button.   
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Table 60: Atlanta: Truck Model Files 

New File Name New Location Description Source (1) 

ffhwy.skm \inputs auto skim file (5) \20YY\ffYYhwy.skm (3) 

nwtaz.prn \inputs zonal land use file \20YY\inputs\nwtazYY.prn (2) 

trkxx10.trp \model.ATL 2010 X/X trip table (5) (4) 

external.prn \inputs external station truck volumes (4) 

znedat.dat \inputs zonal area type data \20YY\znedatYY.dat (3) 

truck zones.dbf \inputs list of truck zones \20YY\parameters\ 
truck zones.dbf (2) 

dist6.eqv \model.ATL zone-district equivalency (4) 

sqz.exe \model.ATL SQZ program  

hwyff.net \inputs highway network \20YY\inputs\hwyYYff.net (2) 

todam.vtt \inputs AM auto trip table file (5) \20YY\TOD\todamYY.vtt (3) 

todmd.vtt \inputs MD auto trip table file (5) \20YY\TOD\todmdYY.vtt (3) 

todpm.vtt \inputs PM auto trip table file (5) \20YY\TOD\todpmYY.vtt (3) 

todnt.vtt \inputs NT auto trip table file (5) \20YY\TOD\todntYY.vtt (3) 

com.trp \inputs commercial vehicle trip table (5) \20YY\com.trp (3) 

truck.s \model.ATL truck model script (4) 

Notes: 
(1) YY represents the last 2 digits of the year: ‘10’ = 2010, ‘40’ = 2040.   
(2) These files are input to the ARC model. 
(3) These files are output from the ARC model. 
(4) These files were created for the tour-based truck model. 

(5) These are binary matrices in Cube format. 
 

Table 61:  Birmingham: Truck Model Files 

New File Name New Location Description Source  

tkfree.skm \inputs truck skim file (4) \Base\H20yy\tkfree.skm (2) 

sovfree.skm \inputs auto skim file (4) \Base\H20yy\sovfree.skm (2) 

speedcap.net \inputs highway network \Base \H20yy\speedcap.net(1) 

sedata2.dbf \inputs zonal land use file \Base\H20yy\sedata2.dbf (1) 

newEmpl.dat \model.BMH Census LEHD employment file (3) 

acres850.dbf \model.BMH zonal area file obtained from RPC 

trkxx10.trp \model.BMH 2010 X/X trip table (4) (3,4) 

trkpct.prn \inputs external station truck volumes (3) 

areatype.prn \inputs zonal area type data \Base\H20yy\areatype.prn (2) 

truck zones.dat \inputs list of truck zones (3) 

dist7.eqv \model.BMH zone-district equivalency (3) 

sqz.exe \model.BMH SQZ program  

am.vtt \inputs AM auto trip table file (5) 

md.vtt \inputs MD auto trip table file (5) 

pm.vtt \inputs PM auto trip table file (5) 

nt.vtt \inputs NT auto trip table file (5) 

truck.s \model.BMH truck model script (3) 

Notes: 
(1) These files are input to the RPC model. 
(2) These files are output from the RPC model. 
(3) These files were created for the tour-based truck model. 
(4) These are binary matrices in Cube format. 
(5) These files are created by the research team’s TOD.S script, included in the Appendix. 
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The full Cube Voyager model script is attached as an Appendix.  As currently written, the script 

is set up to use Cube Cluster, which is the Cube software module that permits the use of 

multiple processors on a single computer.  This greatly reduces the running time for the highway 

assignment step.  If the model is being run on a computer that does not have Cluster or does 

not have multiple processors, the user must first modify the script by removing the four lines in 

truck.s that read as follows: 

For Atlanta, 

- *cluster TECH 1-3 Start Exit (before the assignment loop) 

- DISTRIBUTEINTRASTEP PROCESSID='TECH', PROCESSLIST=1-3 (in the E/E 

assignment) 

- DISTRIBUTEINTRASTEP PROCESSID='TECH', PROCESSLIST=1-3 (in the main 

assignment) 

- *cluster TECH 1-3 Close Exit (after the assignment loop) 

For Birmingham, 

- *cluster BHAM 1-3 Start Exit (before the assignment loop) 

- DISTRIBUTEINTRASTEP PROCESSID='BHAM', PROCESSLIST=1-3 (in the 

assignment) 

- *cluster BHAM 1-3 Close Exit (after the assignment loop) 

 

Note that the model was developed and initially applied using Cluster with four processors.  

Without Cluster (or with Cluster and using a different number of processors), the results may be 

slightly different than those reported here. 

Assignment Validation for Atlanta 

Observed 2010 data on truck volumes was provided indirectly by Georgia DOT.  GDOT’s Office 

of Transportation Data provided a document listing the percentage of weekday trucks and 

annual average daily traffic (AADT) on various links, keyed to the county and a four-digit traffic 

count code (TC).  This was related to the CNTSTATION field in the ARC highway network.  The 
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daily truck count was computed as the weekday percent truck multiplied by the AADT multiplied 

by 1.10 (to account for the fact that the model estimates weekday traffic which is slightly higher 

than the average daily traffic volume throughout the entire year).  This produced truck counts on 

118 directional links (59 two-way roadway segments).  Although the GDOT document does not 

mention how they defined “truck”, the research team believes that it is consistent with the 

definition being used in this study. 

The initial application of the model indicated that the model was slightly overestimating truck 

volumes, particularly in the more urbanized areas.  The solution was to reduce the number of 

estimated tours slightly, using the area type based adjustment shown in Table 62.  Other 

adjustments were tested: 

- Calculate truck paths using a perceived time that is 20% higher for non-freeways (in the 

end, this was not adopted) 

- Various area type factors (other than the final ones shown in Table 62). 

- Adjust the I/X tour main destination choice model so as to more accurately match the 

cordon volumes (adopted). 

- Balance the external tours on a daily basis (i.e., adjusting the values to ensure that on a 

daily basis, the I/X trips would equal the X/I trips) (this was not adopted). 

- Incorporating counts at the external stations (this was not adopted, because those 

volumes were computed differently from the other counts and also because those 

volumes are actually an input to the model and thus it would not be proper to use them 

to compare the outputs). 
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Table 62: Atlanta: Area Type Adjustment 

Area Type Factor 

1 (CBD) 0.9 

2 0.9 

3 0.9 

4 0.9 

5 0.9 

6 1.0 

7 (rural) 1.0 

 

With the adjustments described above, the model replicates the 2010 counts very well, as 

shown in Table 63.  “Volume/count” represents the aggregate volume to count ratio for all 

counted links.  Closer to 1.0 is better.  “% RMSE” is the percent root-mean-square error, which 

is a better indicator of accuracy because it treats over- and under-estimation as equally bad.  It 

is computed as the square root of the sum of the squared error for all counted links, divided by 

the average count.  Lower values are better.  The overall value of 27.8% is an excellent value 

for a truck model.  Most truck models have %RMSE values around 60-80%.  For comparison, 

the old ARC truck model (prior to the 2005 recalibration) had volume/count = 0.73 with 117% 

RMSE.  The current ARC truck model (as recalibrated in 2005) has volume/count = 1.14 with 

49% RMSE.  In addition, the link-level r2 is 0.946; closer to 1.0 is better and values result over 

0.9 are considered acceptable.  This result confirms that the tour-based structure is appropriate 

for truck models. 
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Table 63: Atlanta: Observed/Estimated Link Comparison 

Area Type Volume/Count % RMSE No. of Links 

1 (CBD) 1.23 31.6% 8 

2 1.41 54.2 8 

3 0.93 21.6 15 

4 0.85 28.2 12 

5 0.98 27.3 61 

6 0.94 15.3 6 

7 (rural) 1.07 31.0 8 

Facility Type    

Freeway 0.97 20.6% 64 

Arterial 1.33 106.4 50 

Collector 3.10 215.0 4 

Total 0.99 27.8% 118 

 

Figure 32 shows the link-level observed vs. estimated volume plot, which indicates that the 

counted links generally straddle the 45° line that indicates a perfect fit. 

The truck trip and VMT results can also be compared to those of the current ARC trip-based 

model for 2010 (sum of that model’s medium + heavy truck trips).  The tour-based model 

estimates 453,500 trips and 12,178,000 VMT, while the ARC model estimates 523,700 trips and 

13,753,000 VMT.  So the tour-based model has 13% fewer trips and 11% less VMT, but those 
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differences may be caused by the different calibration timeframes.  The ARC truck model was 

last recalibrated in 2010, to 2005 counts which were taken before the recent economic 

recession.  The tour-based model was calibrated to 2010 counts which reflect lower traffic 

volumes: a nationwide phenomenon due to the recession, which was just starting to end in 

2010-11. 

 

Figure 32: Atlanta: Observed/Estimated Link Plot 
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Assignment Validation for Birmingham 

 

i.  Validation 

Truck counts were provided by Alabama DOT.  The counts were transmitted in a file named 

BHAM10LINK_RPC2_ALDOT1_AAWT_Truck_final.dbf, fields TRUCKCOMBO and 

TRUCKSINGU.  UAB tried to obtain further documentation on this data, but none was 

forthcoming.  It is assumed that the TRUCKCOMBO value represents heavy trucks (FHWA 

class 8-13) and that the counts represent weekday counts in the 2010 time frame.  This file 

contains truck counts on 600 directional links (300 two-way roadway segments), with counts 

dropped where considered to be duplicative or inconsistent with adjacent counts.  Truck counts 

by hour or time period were not available. 

The initial application of the model indicated that the model was overestimating truck volumes, 

particularly in the rural areas.  In a few other areas, the model’s results were different from the 

ATRI GPS data.  The following adjustments were made: 

- Calculate paths using time and tolls only, but no distance-related factors. 

- Various area type factors (including the final ones are shown in Table 64). 

- Adjust the tour destination choice model to estimate more intrazonal tours. 

- Adjust the tour destination choice model to estimate longer external tours. 

- Adjust the number of intermediate stops model to better match the GPS data. 

- Adjust the stop location model to estimate fewer stops in rural areas. 

- Adjust the time of day model to better match the GPS data. 
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Table 64:  Birmingham: Area Type Adjustment 

Area Type Factor 

1 (CBD) 1.0 

2 1.0 

3 1.0 

4 1.0 

5 1.0 

6 1.0 

7 0.2 

8 0.2 

9 (rural) 0.2 

 

ii. Adaptable Assignment 

The tour destination choice model, and all other destination choice models in current use, 

presumes that the choice of destination is a relatively simple phenomenon.  As an overall 

theory, this makes sense: the choice of a destination in general terms is clearly influenced by 

the number of attractions available to satisfy their needs and how distant those attractions are 

from their home.  In the case of truck trips, zonal “attractiveness” is largely correlated with 

employment, especially industrial employment.  However, there are a great many other factors 

that influence that choice on a daily basis, most of which can never be practically measured or 

known.  Moreover, the list of factors and their relative influence probably changes daily.  In truth, 

travel behavior is composed of a somewhat predictable element and a completely random 

component and a truly accurate model would probably have as many variables as there are job 

classes in the study area. 

This reality notwithstanding, travel models are expected to replicate the actual traffic volumes 

that were counted for some base year on a number of roadways, to some specified degree of 

accuracy.  Without that replication, the model does not garner the credibility needed for 

reviewers to have any confidence in the forecasted volumes.  The research team’s experience 

over many years of developing and using travel models suggests that models based on 

theoretical constructs, no matter how well-crafted and sound, rarely achieve a level of base year 

assignment accuracy that public agencies and other reviewers deem satisfactory. 
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Some kind of adjustment to the model or post-processing of its results is almost always 

required.  The challenge is to adjust the model in ways which do not alter the basic travel 

relationships on which it is built.  Doing so would render the model useless for forecasting.  

Many models suffer this fate, because of undue emphasis placed on calibration accuracy, to the 

exclusion of other considerations. 

In order to address this dilemma, a procedure was developed to modify the basic O/D travel 

patterns prior to assignment.  This change consists of relatively minor modifications to the truck 

trip table on an O/D cell-by-cell basis, such that the resulting assignment more closely matches 

the base year counted volumes.  A procedure has been developed to accomplish this, called 

adaptable assignment (or AA).  This is basically a method (one of many) of determining a trip 

table from counts, generically known as “origin/destination matrix estimation (ODME)”.   The 

result is a “delta” trip table, so called because it is added to the model’s calculated trip table 

before assignment.  Most of the individual cell entries in the delta table are small values, but 

their cumulative effect is to change the theoretically estimated travel patterns to more closely 

match the traffic counts in the base year. 

AA is an iterative process.  It works by “skimming” the count and the assigned volume on the 

path connecting each O/D pair.  Those values are used to factor the trips by O/D.  Figure 33 

shows the improvement in estimated vs. count error in each iteration of this process. 

Since the delta trip table can be thought of as a calibration adjustment, it is used to develop the 

model’s forecasts as well.  The delta trip table is added to the future modelled trip table, in the 

same fashion as for calibration.  This same procedure has been used in a number of other 

projects with positive results.  The research team believes that this process produces results 

which meet the twin goals of accurate base year calibration and a credible procedure for 

producing forecasts.  The principal disadvantage of using the delta table is that if the zone 
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system is modified, the delta table must be adjusted accordingly.  As Table 65 shows, the net 

regional effect of this adjustment is small. 

iii. Results 

With the adjustments described above, the model replicates the 2010 counts quite well, as 

shown in Table 66.  “Volume/count” represents the aggregate volume to count ratio for all 

counted links.  Closer to 1.0 is better.  “% RMSE” is the percent root-mean-square error, which 

is a better indicator of accuracy because it treats over- and under-estimation as equally bad.  It 

is computed as the square root of the sum of the squared error for all counted links, divided by 

the average count.  Lower values are better.  The overall value of 29.7% is an excellent value 

for a truck model.  Most truck models have RMSE values around 60-80%.  The comparable 

value for Atlanta is 27.8%.  No prior truck RMSE value for Birmingham was provided by RPC, 

but the research team computed a value of 204% based on RPC’s 2012 estimate of link truck (+ 

taxi) volumes and ALDOT’s 2010 counts. 

 

Figure 33:  Adaptable Assignment Accuracy 
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Table 65:  Calibration Adjustment 

 
                           Tour-Based Truck Model: Birmingham                         

                                 Model Estimated Trips                                

                                                                                      

                                  Destination District                                

                                                                                      

               |       1       2       3       4       5       6       7 |     Total  

---------------+---------------------------------------------------------+----------- 

O   1 Central  |   11753    1753     656     985    3202    1682    2022 |     22053  

r   2 North    |     544    4122     402     207     897     355    1182 |      7709  

i   3 East     |     222     395    1006     132     174     186     514 |      2629  

g   4 South    |     328     251     174    1677     551     591     580 |      4152  

i   5 West     |    1036    1005     217     440   12403    1052    2182 |     18335  

n   6 Shelby   |     180     298     185     554     776    8275    1761 |     12029  

    7 External |     590    1218     323     309    2748    3069   17286 |     25543  

---------------+---------------------------------------------------------+----------- 

      Total        14653            2963           20751           25527 |     92450  

               |            9042            4304           15210         |            

                                                                                      

                                                                                      

                           Tour-Based Truck Model: Birmingham                         

                                    AA Revised Trips                                  

                                                                                      

                                  Destination District                                

                                                                                      

               |       1       2       3       4       5       6       7 |     Total  

---------------+---------------------------------------------------------+----------- 

O   1 Central  |   11217    1565     621     790    2161    1702    3602 |     21658  

r   2 North    |     440    4136     285     192     938     218    1444 |      7653  

i   3 East     |     283     243    1299      61     105      26     585 |      2602  

g   4 South    |     556     105      68    2060     381     331     563 |      4064  

i   5 West     |     952     987     319     487   11494     887    2999 |     18125  

n   6 Shelby   |     299     176      72     446     976    9005    1264 |     12238  

    7 External |     991    1826     259     259    4772    2990   14891 |     25988  

---------------+---------------------------------------------------------+----------- 

      Total        14738            2923           20827           25348 |     92328  

               |            9038            4295           15159         |            

                                                                                      

                                                                                      

                           Tour-Based Truck Model: Birmingham                         

                                   AA Trip Difference                                 

                                                                                      

                                  Destination District                                

                                                                                      

               |       1       2       3       4       5       6       7 |     Total  

---------------+---------------------------------------------------------+----------- 

O   1 Central  |    -536    -188     -35    -195   -1041      20    1580 |      -395  

r   2 North    |    -104      14    -117     -15      41    -137     262 |       -56  

i   3 East     |      61    -152     293     -71     -69    -160      71 |       -27  

g   4 South    |     228    -146    -106     383    -170    -260     -17 |       -88  

i   5 West     |     -84     -18     102      47    -909    -165     817 |      -210  

n   6 Shelby   |     119    -122    -113    -108     200     730    -497 |       209  

    7 External |     401     608     -64     -50    2024     -79   -2395 |       445  

---------------+---------------------------------------------------------+----------- 

      Total           85             -40              76            -179 |      -122  

               |              -4              -9             -51         |            
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Table 66:  Birmingham: Observed/Estimated Link Comparison 

Area Type Volume/Count % RMSE No. of Links 

1 (CBD) 1.17 28.4% 27 

2 0.97 16.6 9 

3 1.01 16.4 4 

4 1.04 30.4 36 

5 1.11 27.6 86 

6 1.06 31.6 218 

7 1.09 22.5 66 

8 1.06 17.9 78 

9 (rural) 2.45 306.5 76 

Facility Type    

Freeway 1.00 12.6 156 

Arterial 2.14 228.6 425 

Collector 2.02 227.2 19 

Total 1.08 29.7% 600 

 

Figure 34 shows the link-level observed vs. estimated volume plot, which indicates that the 

counted links with significant volumes (mostly freeways) generally straddle the 45° line that 
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indicates a perfect fit.  However, it appears that the model overestimates truck volumes on the 

lower volume roads. 

 

Figure 34:  Birmingham: Observed/Estimated Link Plot 
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ATLMain_Plan2040_1022013.s).  The tour-based model estimates a smaller growth in truck 

travel from 2010 to 2040 than does the ARC model.  It is not clear how much of the difference in 

growth is due to the different approach of the models and how much is due to the different 

calibration time frames. 
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Table 67: Atlanta: Forecast Demographics 

  2010   2040  

County HH Population Employment HH Population Employment 

Barrow      23,879    65,670    14,568    49,615   130,793    34,006 

Bartow      34,556    93,551    29,900    64,165   166,902    62,174 

Carroll     41,391   108,234    35,886    72,938   183,113    66,999 

Cherokee    75,687   206,136    43,620   152,285   398,146   116,148 

Clayton     99,583   277,971   113,850   117,501   313,407   158,045 

Cobb    255,229   662,919   304,696   333,190   830,509   458,382 

Coweta      43,363   119,236    30,983    93,353   246,575    67,010 

DeKalb     280,510   720,960   289,110   360,758   887,121   424,201 

Douglas     47,301   127,089    37,620    95,924   253,002    75,422 

Fayette     37,392   105,178    35,854    61,513   166,132    72,989 

Forsyth     62,433   176,104    57,678   141,711   376,542   128,979 

Fulton     391,664   937,391   672,574   548,811 1,257,223 1,033,638 

Gwinnett   265,100   751,938   288,930   425,050 1,153,982   508,847 

Hall      61,857   176,612    66,340   125,247   340,980   124,857 

Henry     68,915   192,470    45,153   159,542   429,736   108,971 

Newton      35,532    96,251    19,636    76,145   197,980    38,973 
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Paulding    45,957   129,003    20,425   104,901   281,896    51,077 

Rockdale    29,890    83,834    28,660    58,530   157,381    47,028 

Spalding    24,748    64,631    20,815    44,258   110,909    36,615 

Walton    28,198    78,018    17,275    57,515   152,717    36,992 

Totals 1,953,185 5,173,196 2,173,573 3,142,952 8,035,046 3,651,353 

 

 

Table 68: Atlanta: Truck Forecasts 

 Tour-Based Model ARC Model 

 2010 2040 Change 2010 2040 Change 

Trips 453,500 550,000 21% 523,700 772,700 48% 

VMT 12,178,000 15,992,000 31% 13,753,000 19,507,000 42% 

 

Birmingham Truck Forecast 

Data for the 2035 estimate was taken from the older RPC model.  Table 69 shows the change in 

the basic demographic variables by county.  This forecast shows a 9% increase in households 

and a 24% increase in employment.  According to the data in Table 25, the future external truck 

volumes (derived from the RPC file ExtCounts35.dbf) will increase by 120% from 2010 to 2035 -

- an annual growth rate of 3.2%.  Cordon truck trips are assumed to increase at the same rate 

as total cordon travel. 

Table 70 shows the tour model’s estimated change in truck travel and compares it to the RPC 

estimated change .  The tour-based model estimates a larger growth in truck travel from 2010 to 
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2035 than does the RPC model.  However, the RPC figures include taxi trips, which makes 

direct comparison with the truck tour results difficult.  In the truck tour model, almost all of the 

growth in truck trips and VMT is due to external and through travel. 

 

 

Table 69:  Birmingham: Forecast Demographics 

  2012   2035  

County HH Population Employment HH Population Employment 

Jefferson 268,953 657,268 349,377 272,688 666,053 418,157 

Shelby 54,005 140,869 58,026 79,799 207,876 85,460 

Totals 322,958 798,137 407,403 352,487 873,929 503,617 

 

 

Table 70:  Birmingham: Truck Forecasts 

 Tour-Based Model RPC Model 

 2010 2035 Change 2012 2035 Change 

Trips 92,500 125,800 +36% 382,600* 453,000* +18% 

VMT 1,773,000 3,314,000 +87% 3,197,000 3,842,000 +20% 

* I/I only; includes taxi. 
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New Zone System and Model Updates 

Near the end of the development of the tour-based truck model, UAB advised the research team 

that RPC had recently changed its traffic analysis zone (TAZ) system, going from 999 zones 

and external stations to 1,986.  Many of the old zones were subdivided, several zone 

boundaries were modified, and the modelled area was expanded.  The truck tour model was 

developed using the old 999 zone system because that is what the ATRI GPS records were 

geocoded to. 

For the most part, the truck tour model is zone-independent.  However, it appears that in 

addition to changing its zone system, RPC made a number of other changes to its model.  

Some of the zonal socioeconomic and network variables may have changed.  The user will 

need to carefully examine the truck tour model script to be sure that it works properly with the 

new RPC model. 

As of this writing, the research team is aware of some files that must be changed for the new 
zone system: 

- The main model script, TRUCK.S, defines a number of “keys” at the beginning of the 

script.  When the model runs, Cube replaces the keys with their equivalent numerical 

value.  The keys that define the old zone system are as follows: 

maxzone = 999 

extsta  = '964-999' 

intzone = '1-850' 

fext    = 964 

liz     = 850 

 

- These must be modified as follows: 

maxzone = 1986 

extsta  = '1935-1986' 

intzone = '1-1934' 

fext    = 1935 

liz     = 1934 
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- TRUCK.S requires the user to select one TAZ to identify the CBD.  In the old zone 

system, this is zone 39.  The same zone in the new system is 27.  This is located near 

line 78 of TRUCK.S. 

- The truck tour model uses a matrix file called DELTA.TRP, which contains the calibration 

adjustments needed to produce better assignments.  This is a Cube binary matrix file 

with four tables that represent the adjustments for AM, MD, PM, and NT periods.  In 

order to work with a new zone system, this file must be renumbered accordingly.  The 

research team recommends that the user create an equivalency file between the old and 

new zone systems.  This can be used in a standard Cube MATRIX run to convert this file 

to the new zone system.  The user must be careful to include Cube’s bucket rounding 

function (ROWFIX) because the existing DELTA.TRP values are all integers.   
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SECTION IV. PLANNING APPLICATION: Atlanta  

Truck Link-Volume Comparison: Existing ARC Model vs. Tour-based 
Truck Model  
 

ARC’s current trip-based truck model is a traditional four-step model that is calibrated to match 

with the 2005 traffic count data. The model subcategorizes trucks into three groups: the medium 

truck, which includes F3 to F7 of the FHWA 13-bin Vehicle Classification; the heavy truck, which 

include F8 to F13 of the FHWA 13-bin Vehicle Classification; and the Commercial Vehicle, 

which include light trucks, vans, and SUVs used for business purpose and not for personal 

transportation. This section summarizes the major steps of the model, which are trip generation, 

trip distribution, and trip assignment, according to ARC’s 2010 documentation of the model.  

In contrast, the proposed tour-based truck model attempts to model truck movements as 

individual tours, which may or may not return to the starting point and which may or may not 

have intermediate stops. The tour’s main destination zones and the number of intermediate 

stops, the stop locations, and the tour’s start time, are identified by using a series of logit models 

and Monte Carlo simulation process. Using ATRI’s truck GPS data, the model was developed 

for two different sized metropolitan areas: Atlanta and Birmingham, and the model was 

designed to be somewhat generic to be transferable to other cities.  The major steps of this 

model include: tour generation, tour main destination choice, identification of the number and 

locations of intermediate stops, identification of time period of tour start, trip accumulator, and 

traffic assignment. 

Figure 35 shows “Link-Volume Comparison” (54,560 network links) between newly developed 

Tour-based model and ARC’s trip-based model by time of day for 2010. ARC model volumes 

are forecasts (The truck component is stratified by medium and heavy truck and calibrated to 

2000 counts and updated to 2005 counts.) and Tour-based model volume is for base year and 
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validated with 2010 observed data.  The ARC model overestimates for AM, PM and MD and 

underestimates for NT. 

 

 

 

Figure 35:  Trip-based vs. Tour-based Model Link Volume Comparison (54,560 Network Links) 
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Performance Measures  
 

Truck Traffic Estimates 

The estimated average daily truck traffic volumes on the roadway network are shown in Figure 

36.  Corridors with high truck traffics include the following Corridors: I-75 from the beltway, I-285 

passing through Cobb and Bartow counties, beltway I-285, I-85 from the beltway I-295 to North 

of Gwinnett County, I-75 along Fulton, Clayton, and Henry counties.   

 

 

Figure 36:  2010 Truck Traffic Estimates on ARC Modelled Area Network with Tour-based Model 
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Figure 37 shows the Interstate highway/Freeway (FACTYPE=1) segments with congested 

speeds as a percentage of free flow speed.  In the network file, speed limit information is less 

complete than free flow speed information. Therefore free flow speed is used to calculate the 

percent congested speed versus free flow speed in order to capture how much congestion and 

associated delay occur during each time of day by facility type (FACTYPE).   Figure 37 shows 

the percent congested speed with an average daily traffic, while Figure 38 shows the same 

measure at different time of day (AM, MD, PM, and NT).  Speeds around metro area slow down 

heavily during the peak hours (AM and PM), and especially during the PM peak (3:00 PM – 7:00 

PM) most of the major interstate highways including I-285 beltway and major corridors such as 

I-85, I-75, I-20, and GA 400 show the congested speed under 60% of free flow speed.  Mid-day 

period (10:00 AM – 3:00 PM) shows relatively milder speed slowdowns and during night time 

(7:00 PM – 6:00 AM) the speed stays close to the free flow speed level.   
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Figure 37:  2010 Congested Speeds as a Percent of Free-Flow Speed for Interstate (FACTYPE=1) with Tour 
Model (Day Level) 
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Figure 38:  2010 Congested Speeds as a Percent of Free-Flow Speed for Interstate (FACTYPE=1) with Tour 
Model: AM (Upper Left); MD (Upper Right); PM (Under Left); NT (Under Right)  

 

In order to analyze how much truck traffic contributes to the congested roadway segments 

during each time of day, percent of truck volumes and the percent of congested speed were 

calculated.  Table 71 and Table 72 show the 20 roadway segments with the highest speed drop.   
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Table 71:  Top 20 Roadway Segments with High Congestion Speed Drop during AM Peak  

A B DIST NAME V_TRKAM V_TOTAM SPEED CGSTDSPD PCT_TRKAM PCT_CSPD 

2785 2844 0.20 
I-75/85 
North 1800 36735 55 14 4.90 24.58 

2839 2785 0.20 
I-75/85 
North 1800 36735 55 14 4.90 24.58 

8877 2839 0.10 
I-75/85 
North 1774 36857 55 16 4.81 29.53 

2780 2783 0.10 
I-75/85 
North 1353 25519 55 16 5.30 29.54 

2783 8877 0.20 
I-75/85 
North 1353 25519 55 16 5.30 29.54 

5235 4755 0.90 
I-285 
North 2096 35901 55 17 5.84 31.42 

2799 2800 0.20 
I-75/85 
North 1826 30864 55 18 5.92 32.63 

2786 2849 0.20 
I-75/85 
North 1775 34854 55 20 5.09 35.51 

2843 2786 0.05 
I-75/85 
North 1775 34854 55 20 5.09 35.51 

2844 2843 0.11 
I-75/85 
North 1775 34854 55 20 5.09 35.51 

3253 3254 0.07 I-75 1232 27384 63 22 4.50 35.70 

3254 3255 0.12 I-75 1232 27384 63 22 4.50 35.70 

3273 3253 0.10 I-75 1232 27384 63 22 4.50 35.70 

4002 4003 0.10 
I-20 
West 936 20450 61 22 4.58 36.09 

4003 17877 0.17 
I-20 
West 936 20450 61 22 4.58 36.09 

2724 2725 0.05 
I-20 
West 1009 24327 55 20 4.15 36.13 

2725 8858 0.09 
I-20 
West 1009 24327 55 20 4.15 36.13 

2788 2796 0.05 
I-75/85 
North 1830 34403 55 20 5.32 36.69 

2796 2797 0.10 
I-75/85 
North 1830 34403 55 20 5.32 36.69 

2797 2798 0.10 
I-75/85 
North 1830 34403 55 20 5.32 36.69 
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Table 72:  Top 20 Roadway Segments with High Congestion Speed Drop During PM Peak 

A B DIST NAME SPEED V_TRKPM V_TOTPM CGSTDSPD PCT_TRKPM PCT_CSPD 

4943 4945 0.14 
GA 400 
North 58 504 23128 9 2.18 15.74 

2841 3147 0.20 
I-75/85 
South 55 1660 39931 12 4.16 21.48 

3147 2840 0.10 
I-75/85 
South 55 1660 39931 12 4.16 21.48 

5253 5565 0.09 I-285 South 58 1851 38092 13 4.86 22.02 

4759 5261 0.90 I-285 South 55 2021 41110 12 4.92 22.24 

2781 2937 0.10 
I-75/85 
South 55 1238 28149 13 4.40 24.17 

6973 6975 0.22 I-85 East 61 1345 15070 15 8.93 24.81 

2840 2781 0.30 
I-75/85 
South 55 1660 39850 14 4.17 25.76 

2855 3154 0.07 
I-75/85 
South 55 1706 34291 14 4.98 26.01 

3154 2853 0.07 
I-75/85 
South 55 1706 34291 14 4.98 26.01 

15655 3167 0.17 I-85 East 58 1148 20997 15 5.47 26.52 

59236 7015 1.19 
SR 316 - 
East 61 537 15548 16 3.45 26.64 

2792 2793 0.05 
I-75/85 
South 55 1606 33941 15 4.73 27.13 

5258 5255 0.38 I-285 South 61 2001 41833 17 4.78 27.89 

4080 4056 0.18 I-285 South 61 1808 29901 17 6.05 27.92 

3127 2938 0.20 I-20 East 55 1076 32232 16 3.34 28.52 

2853 3155 0.20 
I-75/85 
South 55 1744 38541 16 4.53 28.63 

3155 2852 0.15 
I-75/85 
South 55 1744 38541 16 4.53 28.63 

4796 4797 0.09 I-75 North 58 1163 25703 17 4.52 28.95 

4797 4801 0.15 I-75 North 58 1163 25703 17 4.52 28.95 

 

Truck Vehicle Miles of Travel 

Daily vehicle miles traveled (VMT) is the number of vehicles on the roadway network per day 

times the length of roadway they travel.  It is an indicator of the travel levels on the roadway 

system by motor vehicles.  It is often used to estimate congestion level, on-road vehicle fuel 

consumption, air quality status, and potential gasoline-tax revenues.  

State departments of transportation are required to include Annualized Average Daily Traffic 

(AADT) counts (based on a statistical sample) and mileage for all roadway for each urban area 

as part of their annual Highway Performance Management System (HPMS) submittal.  The 
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HPMS based VMT can be summarized by roadway functional classification as well as by area 

type and can be compared to the volumes produced from an agency’s models.   

Georgia Department of Transportation (GDOT) produces the 400 Series Reports (known as 

Roadway Mileage & Characteristics Reports) every year. The reports depict mileage and Daily 

Vehicle Miles Traveled (DVMT) in several categories for each county in Georgia and for the 

whole state. Report 445 shows county-specific mileage by route type and functional 

classification. See 

 http://www.dot.ga.gov/informationcenter/statistics/RoadData/Pages/default.aspx  

Table 73 and Figure 39 show comparisons of DVMT that were produced from (1) ARC’s current 

trip based model and (2) the proposed tour-based model, compared to those values from report 

445.  Overall, both models produce very close values of daily VMT by county. 

 

Table 73:  Daily Vehicle Miles Traveled 2010 

  
CLAYTO

N COBB  
COWET

A  DEKALB 
DOUGLA

S  FULTON  
GWINNET

T  HENRY  
ROCKDAL

E  

TRIP model 
results 

7,905,976 
18,353,78

1 
3,943,21

5 
20,607,29

7 
4,254,686 

33,087,82
4 

20,401,579 
5,859,97

4 
2,653,614 

TOUR model 
results 

7,759,706 
18,091,10

9 
3,895,88

6 
20,380,83

6 
4,250,464 

32,447,04
9 

20,133,653 
5,903,17

9 
2,668,110 

GDOT report 
445 

7,715,000 
19,109,00

0 
3,969,00

0 
21,057,00

0 
4,404,000 

33,309,00
0 

20,964,000 
6,563,00

0 
3,066,000 

http://www.dot.ga.gov/informationcenter/statistics/RoadData/Pages/default.aspx
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Figure 39:  Daily Vehicle Miles Traveled 2010 

 

Truck VMT was also derived from both ARC’s current trip based model and the proposed tour-

based model. The truck VMT for each model link was estimated by multiplying the truck volume 

by the link length. For each volume group j, truck VMT is calculated by summing the truck VMT 

of all sections of roads in that group, as formulated in the following equation, where lij is the 

roadway length for section i in volume group j, and Vij is the corresponding truck volume on that 

section. 

𝑡𝑟𝑢𝑐𝑘 𝑉𝑀𝑇𝑗 =  ∑(𝑙𝑖𝑗)(𝑡𝑟𝑢𝑐𝑘 𝑉𝑖𝑗)
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Table 74 and Figure 40 show the estimated truck VMT.  Unlike the daily VMT, there were no 

reference values available to compare the model estimates with.  Therefore, Figure 40 shows 

the comparison between the results of the two models.  The trip model shows higher truck VMT 

estimate overall and the gaps are especially higher within urban counties (Fulton, Gwinnett, 

DeKalb, and Cobb), while rural counties show similar estimates for both models.   

Table 74:  Truck Daily Vehicle Miles Traveled 2010 

  CLAYTON COBB  COWETA  DEKALB DOUGLAS  FULTON  GWINNETT  HENRY  ROCKDALE  

TRIP 
model 
results 

816,447 1,637,806 471,926 1,690,523 516,370 2,698,106 1,808,293 668,934 226,219 

TOUR 
model 
results 

629,293 1,308,335 419,557 1,389,889 523,394 2,081,115 1,516,076 714,457 249,459 
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Figure 40:  Truck Daily Vehicle Miles Traveled 2010 (Trip vs. Tour Model Results) 

 

Table 75 through Table 78 show truck VMT comparisons between the two models by time of 

day (AM, MD, PM, and NT) and by area type (CBD/Very high density urban, High density urban, 

Medium density urban, Low density urban, Suburban, Exurban, and Rural).  The trip model 

estimates higher truck VMT volumes for AM, MD, and PM for all the area types than the tour 

model. Higher estimates with the trip model are particularly in the following area types: High 

Density Urban, Medium Density Urban, and Low Density Urban.  However, the tour model 

estimates higher truck VMT volumes than those of the trip model for NT for every area type.  
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The tour model produces higher estimates in the rural area types (Suburban, Exurban, and 

Rural).    

Table 75:  Truck VMT Comparison for AM Peak 2010 (ARC Trip Model vs. Tour Model) 

    ARC Trip Model Tour Model   

  Area Type Truck VMT Truck VMT 

Percent 
Overestimated w/ 

Trip model 

1 
CBD/Very High Density 
Urban 39761 28571 0.39 

2 High Density Urban 142805 82674 0.73 

3 Medium Density Urban 293108 171398 0.71 

4 Low Density Urban 396526 232422 0.71 

5 Suburban 1320979 875817 0.51 

6 Exurban 432673 287028 0.51 

7 Rural 400102 279506 0.43 

 

Table 76:  Truck VMT Comparison for PM Peak 2010 (ARC Trip Model vs. Tour Model) 

    ARC Trip Model Tour Model   

  ATYPE Truck VMT Truck VMT 

Percent 
Overestimated w/ 

Trip model 

1 
CBD/Very High Density 
Urban 39641 27779 0.43 

2 High Density Urban 147530 82695 0.78 

3 Medium Density Urban 308015 178136 0.73 

4 Low Density Urban 417072 248826 0.68 

5 Suburban 1413046 942783 0.50 

6 Exurban 465819 345327 0.35 

7 Rural 434893 361373 0.20 
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Table 77:  Truck VMT Comparison for Mid-Day 2010 (ARC Trip Model vs. Tour Model) 

    ARC Trip Model Tour Model   

  ATYPE Truck VMT Truck VMT 

Percent 
Overestimated 
w/ Trip model 

1 
CBD/Very High Density 
Urban 67426 42808 0.58 

2 High Density Urban 240452 131519 0.83 

3 Medium Density Urban 497385 299017 0.66 

4 Low Density Urban 658094 421994 0.56 

5 Suburban 2183982 1596562 0.37 

6 Exurban 701570 597536 0.17 

7 Rural 636729 612680 0.04 

 

Table 78:  Truck VMT Comparison for Night Time 2010 (ARC Trip Model vs. Tour Model) 

    ARC Trip Model Tour Model   

  ATYPE Truck VMT Truck VMT 

Percent Under-
estimated w/ Trip 

model 

1 
CBD/Very High 
Density Urban 35075 51047 -0.31 

2 High Density Urban 119120 150683 -0.21 

3 Medium Density Urban 259256 346367 -0.25 

4 Low Density Urban 330806 489749 -0.32 

5 Suburban 1086766 1832270 -0.41 

6 Exurban 362217 723047 -0.50 

7 Rural 321979 737955 -0.56 

 

Table 79 shows the model forecast results for both trip-based model and tour-based model for 

year 2040. Compared to the trip based model, the tour model under-forecasts truck volume by 

21.15% and truck VMT by 18.20% region wide. One interesting observation is that (when truck 

VMT is reviewed by time of day) NT truck VMT of the tour model is much higher than that of trip 

model by 63.02% while the other time of day results (AM, MD, and PM truck VMT) are much 
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lower by 41.81%, 32.57%, and 35.28% respectively. Night time delay hours are expected to be 

46.88% more with the tour model.         

Table 79:  Trip-based vs. Tour-based Model Performance Measure Comparison 2040 

 

 
 
 

Level of Service 

 
Level of service (LOS) is a qualitative measure used to describe the operating conditions of 

roadway (freeway, multilane highway, two-lane highway, and arterial) segments and 

intersections based on performance measures such as density, speed, travel time, 

maneuverability, delay, and safety. The level of service of a facility is designated with a letter, A 

to F, with A representing the best operating condition and F the worst. The Highway Capacity 

Manual is the most widely recognized source for determining level of service (LOS) and it uses 

PERFORMANCE MEASURE:  VMT VHT for 20 Counties ARC Trip-based

VEHICLE VOLUME BY MODE

SOV 379,999,895 378,581,408 -0.37%

HOV 99,675,973 104,240,304 4.58%

COMMERCIAL VEH 57,864,086 58,519,071 1.13%

TRUCK 46,315,479 36,518,076 -21.15%

TOTAL DAILY VEHICLE 583,855,433 577,858,859 -1.03%

VEHICLE MILES TRAVELED BY MODE

SOV 148,831,783 148,526,641 -0.21%

HOV 38,870,042 40,363,456 3.84%

COMMERCIAL VEH 23,269,620 23,595,155 1.40%

TRUCK 19,506,484 15,991,685 -18.02%

TOTAL DAILY VMT 230,477,928 228,476,938 -0.87%

VEHICLE MILES TRAVELED BY TIME PERIOD

AM VMT 54,462,150 52,772,913 -3.10%

MD VMT 65,316,578 62,353,521 -4.54%

PM VMT 74,197,126 73,352,502 -1.14%

NT VMT 36,502,073 39,998,002 9.58%

TOTAL DAILY VMT 230,477,928 228,476,938 -0.87%

VEHICLE MILES TRAVELED SUMMARY

VMT per Capita 28.7 28.4 -1.05%

VMT per Household 73.3 72.7 -0.82%

VMT per Job 63.1 62.6 -0.79%

VEHICLE HOURS TRAVELED SUMMARY

VHT per Capita 1.4 1.3 -7.14%

VHT per Household 3.6 3.4 -5.56%

VHT per Job 3.1 2.9 -6.45%

TRUCK VEHICLE MILES TRAVELED BY TIME PERIOD

AM TRUCK VMT 4,294,023 2,498,782 -41.81%

MD TRUCK VMT 7,144,964 4,818,003 -32.57%

PM TRUCK VMT 4,553,870 2,947,117 -35.28%

NT TRUCK VMT 3,513,626 5,727,783 63.02%

TOTAL DAILY TRUCK VMT 19,506,484 15,991,685 -18.02%

TRUCK (CONGESTED) VEHICLE HOURS TRAVELED BY TIME PERIOD

AM TRUCK CONGESTED VHT 430,907 95,502 -77.84%

MD TRUCK CONGESTED VHT 621,056 148,566 -76.08%

PM TRUCK CONGESTED VHT 606,948 141,749 -76.65%

NT TRUCK CONGESTED VHT 177,873 155,644 -12.50%

TOTAL DAILY TRUCK VHT 1,836,784 541,462 -70.52%

DAILY DELAY HOURS

AM Delay 1,023,970 899,744 -12.13%

MD Delay 573,984 439,732 -23.39%

PM Delay 2,165,941 2,023,680 -6.57%

NT Delay 79,056 116,119 46.88%

TOTAL DELAY 3,842,951 3,479,275 -9.46%

AVERAGE HIGHWAY SPEEDS

Daily Free-Flow Average Speed 31.4 31.4 0.00%

Daily Congested Average Speed 20.6 21.2 2.91%

DAILY FUEL CONSUMPTION BY CAR/TRUCK (GALLONS OF FUEL)

PASSENGER CAR FUEL CONSUMPTION 10,491,997 10,558,418 0.63%

COM VEHICLE FUEL CONSUMPTION 1,551,308 1,573,010 1.40%

TRUCK FUEL CONSUMPTION 3,251,081 2,665,281 -18.02%

TOTAL FUEL CONSUMPTION 15,294,385 14,796,709 -3.25%

ATL  Tour-based
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a variety of single field measurable performance measures for level of service, depending on 

type of roadway. For freeways it is density in terms of equivalent passenger cars. For two-lane 

rural highways it is percent time delay. For arterial streets it is mean speed of through traffic. For 

an intersection it is mean delay. 

 

Both ARC’s trip-based model and the proposed tour-based model use daily volume to capacity 

ratio (V/C ratio) as an alternative for determining LOS for planning purposes. The breakpoints of 

V/C ratio were reviewed for later use. Table 80 is modified from GDOT’s ‘General Summary of 

Recommended Travel Demand Model Development Procedures for Consultants, MPOs and 

Modelers (2013).  

 

Table 80:  Level of Service V/C Ratio Breakpoints 

 Average Level of Service 

 A B C D E 

Proposed tour model  0.50 0.70 0.84 1.00 

ARC trip-based model  0.50 0.70 0.84 1.00 

GDOT models 0.30 0.50 0.70 0.85 1.00 

All data sources 0.29 0.49 0.70 0.88 1.00 

HCM 2010 & FDOT Q/LOS 0.27 0.48 0.65 0.87 1.00 

Other Online Sources 0.43 0.58 0.80 0.90 1.00 
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Figure 42 and Figure 43 show the level of service of the roadway network for the Atlanta region 

(Figure 42) and its three most urban counties (Figure 43: Fulton, DeKalb, and Gwinnett) for year 

2010 based on the daily volume to capacity (V/C) proposed above and using the proposed tour-

based model.  It appears that many of the roadways within urban counties such as Fulton,   

DeKalb, Cobb, and Gwinnett are suffering from heavy traffic congestion. More detailed analyses 

are needed in order to examine sub-regions by time of day and by functional class. 

 

 

Figure 41:  Level of Service 2010 with Tour-based model 
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Figure 42:  Level of Service 2010 for Three Major Urban Counties (Fulton, DeKalb, and Gwinnett) with Tour-
based model 

When the level of service/congestion is analyzed by different time of day at the link or corridor 

level, variation in truck traffic contributions to the congestion level at the roadway segment at 

different times of day can be revealed.   

Figure 43 shows the level of service and truck volume share by time of day for the segment of I-

285 South from model node #5252 to #5240, which covers 0.34 miles of a four lane facility.  

Total daily traffic volume is estimated as 85,770 and daily truck volume of 9,450 or 11.02% of 

this total.  During the AM peak period (6:00 am – 10:00 am for Atlanta), 11.46% of the total 
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traffic (16,010) is truck volume (1,834). During the MD period (10:00 am – 3:00 pm for Atlanta), 

10.86% of the total traffic (25,686) is truck volume (2,789). During the PM peak period (3:00 pm 

– 7:00 pm for Atlanta), 5.52% of the total traffic (25,719) is truck volume (1,420). Noticeably, the 

NT period (7:00 pm – 6:00 am for Atlanta) shows the highest truck share which is 18.56% of the 

total traffic (18,355).  These results suggest that a daily V/C should be avoided when 

determining roadway congestion level, since it varies so much throughout a day.  The inset 

table in Figure 43 shows V/C ratio and LOS by time of day more clearly.  Usually the hourly 

capacity is assumed to be the 10 percent of the daily capacity. The V/C ratios are calculated 

applying capacity factors as follows: 

VC ratio AM= V_TOTAM / (AMCAPACITY * Capacity Factor) 

VC ratio MD= V_TOTMD / (MDCAPACITY * Capacity Factor) 

VC ratio PM= V_TOTPM / (PMCAPACITY * Capacity Factor) 

VC ratio NT= V_TOTNT / (NTCAPACITY * Capacity Factor) 

VC ratio (Daily) = V_TOTDAY / (CAPACITY * 10)      

Capacity factors vary for each regional model and here are the capacity factors applied within 

the Atlanta MPO (ARC) and Birmingham MPO (RPCGB) models. 

  Capacity Factor  ARC   RPCGB 

AM    4   2.22   

MD    5   5.16 

PM    4   2.92 

NT    11   3.28 
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It seems that the segment suffers from congestion with LOS ‘F’. However, when V/C is analyzed 

by time of day, the congestion level of the roadway segment seems to be much milder.      

 

Figure 43:  Level of Service and Truck Volume Share by Time of Day (I-285 South Segment from Node 5252 to 
Node 5240) 

Figure 44 shows level of service and truck volume share by time of day for the segment of I-85 

North from model node #17854 to #5469 which is a 0.67-mile and six-lane facility.  Total daily 
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traffic volume is estimated as 110,861 and daily truck volume takes about 12.88%, which is 

14,276.  For the selected roadway segment, the night time (NT) period also shows the highest 

truck share which is 22.73% of the total traffic of 22,926 during that period.  The LOS level is 

mapped in this map based on daily traffic volume and daily roadway capacity. The daily V/C 

ratio of the selected segment indicates it has the LOS of ‘F’, but the LOS by each time of day 

are much milder: ‘C’ at AM peak, ‘D’ at mid-day, ‘E’ at PM peak, and ‘A/B’ at night time.    

 

Figure 44:  Level of Service and Truck Volume Share by Time of Day (I-85 North Segment from Node 17854 to 
Node 5469) 
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As shown with these examples, the proposed model can be used for identifying major highway 

corridors of heavy truck use at various scales and developing appropriate congestion 

management strategies.  Examples may include: 

 Bottleneck analysis 

 Development of alternative truck routes 

 Development of alternative time management for truck movement 

 Development of truck restriction areas 

 Integration with crash and safety related database 

 

Scenarios and the Tour-based Model  
 

The Georgia DOT’s statewide freight and logistics plan designates truck corridors with regard to 

oversize trucks. Figure 45 shows the three coding schemes that GDOT uses: Class A is for 

designated access routes for oversize trucks allowing single and twin trailers; Class C is used 

for designated access routes that only allow for oversize trucks that utilize twin trailers. These 

are routes with sharp turns that oversize (in terms of length) single trailer trucks cannot 

negotiate, but shorter, articulated twin trailer combinations can use; and Class D is for all 

Interstate routes. Oversize trucks are defined as trucks that have either longer dimensions than 

the standard five-axle semi-trailer, or are heavier than the 80,000-pound federal truck weight 

limit.  Since freight movements coming from the eastern seaboards are expected to move along 

I-75 (leaving the Port of Savannah through I-16 and merging onto I-75 at Macon) and I-20, 

scenarios were developed to manifest potential truck volume changes along those corridors.     
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Figure 45:  Georgia Designated Truck Corridors (Source: GDOT statewide freight and logistics plan) 

 

Scenarios involve hypothetical truck volume changes for specific external stations: that is 

External Station #2087 for I-75 entering the model area from Savannah, GA and Florida, and 

Station #2078 for I-20 from Augusta, GA. Since the external station truck volumes (external.prn) 

are one of the key input files, manipulating the external station truck volumes can allow 

investigators to simulate how potential changes in these incoming truck volumes affect the 

dynamics of internal truck movements within the modeling area.  For example we are expecting 

additional truck volume increases due to Panama Canal expansion for year 2040.  With this 
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expected future in mind we apply a set of hypothetical volume changes to those external 

stations where most canal impacts are likely to occur and simulate the model applications and 

evaluate the results.  Specifically, the research team applied three hypothetical volume 

increases (30%, 50%, and 70%) to those selected external stations (#2087 and #2078).  Table 

81 shows the selected scenarios with corresponding scenario volumes applied.   

Table 81:  Selected Scenarios 

SCENARIO 
External 

Station 

Tour-Model 

Forecast  

Volume 

(2040) 

Hypothetical 

Increase 

Scenario 

Volume 

(2040) 

Truck 

Corridor 

Scenario 1 ES-2087 29476 30% Increase 38319 I-75 

Scenario 2 ES-2087 29476 50% Increase 44214 I-75 

Scenario 3 ES-2087 29476 70% Increase 50109 I-75 

Scenario 4 ES-2078 11639 30% Increase 15131 I-20 

Scenario 5 ES-2078 11639 50% Increase 17459 I-20 

Scenario 6 ES-2078 11639 70% Increase 19786 I-20 

 

The following set of performance measures are used to evaluate the results for each scenario: 

(1) vehicle volume by mode, (2) vehicle miles traveled (VMT) by mode, (3) truck vehicle miles 

traveled by time period, (4) VMT per capita, VMT per household, VMT per job, (5) VHT per 

capita, VHT per household, VHT per job, (6) truck vehicle hours traveled (VHT) by time period, 

(7) daily delay hours, (8) average highway speeds, (9) daily fuel consumption by mode, (10) 

percent VMT by level-of-service. These performance measures are calculated and summarized 
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by the 10 counties (Clayton, Cobb, Coweta, DeKalb, Douglas, Fulton, Gwinnett, Henry, Newton) 

located along the major truck corridors. 

Scenario 1 

With a 30% increase of truck volume at external station #2087, the total truck volume in the 

modeling area (20 counties) shows a 1.41% increase area wide, while Henry County shows the 

highest truck volume increase with 13.18% and Clayton County the second highest with a 

6.70% increase; which seems to be reasonable since those counties are located between the 

external station and the metro core areas along I-75. The adjacent counties such as Fulton, 

DeKalb, and Rockdale Counties show some truck volume increases as well (2.45%, 1.43%, and 

3.17% respectively). Table 82 shows the percent changes in performance measures at the 

county level with Scenario 1 compared to 2040 base results of the tour model. 
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Figure 46:  Percent Changes in County Truck Volume with Scenario 1 
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Table 82:  Percent Changes in Performance Measures at County Level with Scenario 1 

 

  

PERFORMANCE MEASURE:  VMT VHT for 20 Counties CLAYTON COBB COWETA DEKALB DOUGLAS FULTON GWINNETT HENRY ROCKDALE 

VEHICLE VOLUME BY MODE

TRUCK 1.41% 6.70% 0.37% -0.54% 1.43% -0.25% 2.45% -0.35% 13.18% 3.17%

TOTAL DAILY VEHICLE 0.08% 0.38% 0.02% -0.03% 0.06% 0.02% 0.09% 0.01% 0.92% 0.23%

VEHICLE MILES TRAVELED BY MODE

TRUCK 1.94% 7.51% 0.48% 0.15% 1.82% 0.37% 1.82% -0.38% 15.88% 2.95%

TOTAL DAILY VMT 0.12% 0.43% 0.03% 0.03% 0.08% 0.01% 0.08% 0.00% 1.32% 0.26%

TRUCK VEHICLE MILES TRAVELED BY TIME PERIOD

AM TRUCK VMT 2.23% 7.39% 0.53% 0.95% 2.02% 2.07% 2.20% -0.05% 15.13% 3.33%

MD TRUCK VMT 2.26% 6.99% 1.18% 1.60% 1.85% 0.45% 2.20% 0.28% 15.21% 1.71%

PM TRUCK VMT 1.54% 6.83% 0.18% -0.20% 1.58% -0.12% 1.39% -1.70% 15.77% 3.94%

NT TRUCK VMT 1.77% 8.38% 0.03% -1.12% 1.81% -0.07% 1.53% -0.40% 16.79% 3.35%

TOTAL DAILY TRUCK VMT 1.94% 7.51% 0.48% 0.15% 1.82% 0.37% 1.82% -0.38% 15.88% 2.95%

TRUCK (CONGESTED) VEHICLE HOURS TRAVELED BY TIME PERIOD

AM TRUCK CONGESTED VHT 2.07% 6.89% 0.46% 0.59% 2.10% 1.94% 2.44% -0.04% 15.98% 3.57%

MD TRUCK CONGESTED VHT 2.71% 6.11% 1.08% 1.48% 2.09% 0.32% 2.47% -0.03% 20.75% 2.19%

PM TRUCK CONGESTED VHT 1.37% 6.04% 0.15% -0.31% 1.83% -0.05% 1.46% -2.19% 17.72% 4.68%

NT TRUCK CONGESTED VHT 1.82% 7.49% -0.22% -1.77% 2.02% -0.39% 1.50% -0.49% 19.36% 3.77%

TOTAL DAILY TRUCK VHT 1.99% 6.64% 0.36% -0.16% 2.00% 0.25% 1.93% -0.76% 18.84% 3.53%

DAILY DELAY HOURS

AM Delay 0.46% 1.57% 0.22% 0.04% 0.36% 0.21% 0.46% 0.23% 4.01% 0.91%

MD Delay 1.27% 2.85% 0.41% 0.91% 0.91% 1.11% 0.42% -0.07% 16.15% 1.64%

PM Delay 0.25% 1.03% 0.19% 0.02% 0.35% 0.31% 0.14% -0.31% 4.61% 1.48%

NT Delay 2.09% 6.18% 0.62% -1.51% 0.89% 0.43% 0.97% -0.11% 20.54% 2.73%

TOTAL DELAY 0.50% 1.55% 0.24% 0.09% 0.44% 0.38% 0.28% -0.13% 6.98% 1.38%

DAILY FUEL CONSUMPTION BY CAR/TRUCK (GALLONS OF FUEL)

TRUCK FUEL CONSUMPTION 1.94% 7.51% 0.48% 0.15% 1.82% 0.37% 1.82% -0.38% 15.88% 2.95%

TOTAL FUEL CONSUMPTION 0.33% 1.31% 0.08% 0.05% 0.25% 0.07% 0.25% -0.05% 3.76% 0.64%
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Scenario 2 

With a 50% increase of truck volume at external station #2087, the model shows 2.39% area 

wide truck volume increase. Similar to Scenario 1, counties most impacted from the volume 

changes are Henry (22.26%), Clayton (12.01%), Rockdale (5.30%), Fulton (3.82%), and DeKalb 

(2.32%).   Accordingly, the other performance measures such as VMT, VHT, truck VMT, daily 

delay hours, and truck fuel consumption also highly increased in those counties.  

 

Figure 47:  Percent Changes in County Truck Volume with Scenario 2 
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Table 83:  Percent Changes in Performance Measures at County Level with Scenario 2 

 

  

PERFORMANCE MEASURE:  VMT VHT for 20 Counties CLAYTON COBB COWETA DEKALB DOUGLAS FULTON GWINNETT HENRY ROCKDALE 

VEHICLE VOLUME BY MODE

TRUCK 2.39% 12.01% 0.19% -0.36% 2.32% 0.05% 3.82% -0.50% 22.26% 5.30%

TOTAL DAILY VEHICLE 0.15% 0.72% 0.05% 0.01% 0.10% 0.09% 0.15% -0.01% 1.59% 0.40%

VEHICLE MILES TRAVELED BY MODE

TRUCK 3.30% 13.36% 0.48% 0.47% 3.03% 0.81% 2.84% -0.54% 26.75% 4.95%

TOTAL DAILY VMT 0.20% 0.78% 0.05% 0.07% 0.13% 0.04% 0.13% -0.01% 2.26% 0.44%

TRUCK VEHICLE MILES TRAVELED BY TIME PERIOD

AM TRUCK VMT 3.72% 12.69% 1.65% 2.22% 3.19% 3.31% 3.35% -0.12% 25.46% 4.91%

MD TRUCK VMT 3.44% 12.55% 1.03% 0.05% 3.52% 0.93% 2.96% -0.57% 26.06% 5.24%

PM TRUCK VMT 2.65% 11.71% -0.57% -0.32% 2.97% 0.32% 2.36% -1.42% 25.58% 5.24%

NT TRUCK VMT 3.32% 15.19% 0.02% 0.56% 2.58% 0.05% 2.73% -0.27% 28.40% 4.54%

TOTAL DAILY TRUCK VMT 3.30% 13.36% 0.48% 0.47% 3.03% 0.81% 2.84% -0.54% 26.75% 4.95%

TRUCK (CONGESTED) VEHICLE HOURS TRAVELED BY TIME PERIOD

AM TRUCK CONGESTED VHT 3.57% 12.33% 1.40% 1.78% 3.21% 3.22% 3.76% 0.04% 27.30% 5.48%

MD TRUCK CONGESTED VHT 4.62% 11.37% 0.95% -0.29% 4.01% 0.78% 3.31% -0.90% 40.43% 6.50%

PM TRUCK CONGESTED VHT 2.62% 11.12% -0.80% -0.72% 3.27% 0.72% 2.62% -1.59% 29.65% 6.43%

NT TRUCK CONGESTED VHT 3.55% 14.10% -0.34% -0.07% 2.74% -0.41% 2.71% -0.29% 33.42% 4.93%

TOTAL DAILY TRUCK VHT 3.60% 12.30% 0.20% 0.01% 3.32% 0.76% 3.04% -0.76% 33.61% 5.85%

DAILY DELAY HOURS

AM Delay 0.83% 2.46% 0.52% 0.48% 0.60% 0.61% 0.82% 0.32% 6.53% 1.54%

MD Delay 2.43% 5.88% 0.89% 0.37% 1.47% 1.04% 0.65% -0.18% 33.69% 4.76%

PM Delay 0.54% 1.81% 0.06% 0.24% 0.58% 0.55% 0.45% -0.15% 7.75% 2.34%

NT Delay 3.74% 9.46% 0.78% 0.00% 1.99% 0.31% 1.95% 0.10% 35.02% 4.01%

TOTAL DELAY 0.96% 2.66% 0.30% 0.31% 0.73% 0.61% 0.61% -0.03% 12.64% 2.43%

DAILY FUEL CONSUMPTION BY CAR/TRUCK (GALLONS OF FUEL)

TRUCK FUEL CONSUMPTION 3.30% 13.36% 0.48% 0.47% 3.03% 0.81% 2.84% -0.54% 26.75% 4.95%

TOTAL FUEL CONSUMPTION 0.57% 2.35% 0.09% 0.13% 0.43% 0.17% 0.39% -0.07% 6.36% 1.07%
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Scenario 3 

With a 70% increase of truck volume at external station #2087, the model shows 3.31% area 

wide truck volume increase. Similar to Scenario 1 and 2, counties most impacted from the 

volume changes are Henry (31.09%), Clayton (16.28%), Rockdale (7.47%), Fulton (5.18%), and 

DeKalb (3.81%).   Accordingly, the other performance measures such as VMT, VHT, truck VMT, 

daily delay hours, and truck fuel consumption also greatly increased in those counties.  

 

 

Figure 48:  Percent Changes in County Truck Volume with Scenario 3 
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Table 84:  Percent Changes in Performance Measures at County Level with Scenario 3 

 

  

PERFORMANCE MEASURE:  VMT VHT for 20 Counties CLAYTON COBB COWETA DEKALB DOUGLAS FULTON GWINNETT HENRY ROCKDALE 

VEHICLE VOLUME BY MODE

TRUCK 3.31% 16.28% 0.55% 0.07% 3.81% -0.16% 5.18% -0.72% 31.09% 7.47%

TOTAL DAILY VEHICLE 0.24% 0.94% 0.11% 0.05% 0.19% 0.09% 0.31% -0.01% 2.29% 0.59%

VEHICLE MILES TRAVELED BY MODE

TRUCK 4.65% 18.39% 0.72% 0.80% 4.76% 1.09% 3.96% -0.76% 37.71% 6.90%

TOTAL DAILY VMT 0.29% 1.03% 0.08% 0.09% 0.21% 0.05% 0.22% -0.02% 3.24% 0.63%

TRUCK VEHICLE MILES TRAVELED BY TIME PERIOD

AM TRUCK VMT 5.36% 18.49% 2.14% 1.46% 4.48% 3.03% 4.55% 0.85% 36.81% 7.75%

MD TRUCK VMT 4.80% 16.85% 1.16% 2.88% 5.14% 1.45% 4.47% -0.49% 36.34% 6.11%

PM TRUCK VMT 3.93% 16.65% -0.04% 0.85% 4.32% 1.08% 3.57% -1.77% 36.08% 5.36%

NT TRUCK VMT 4.58% 20.61% 0.07% -1.12% 4.82% 0.11% 3.42% -1.21% 40.01% 8.13%

TOTAL DAILY TRUCK VMT 4.65% 18.39% 0.72% 0.80% 4.76% 1.09% 3.96% -0.76% 37.71% 6.90%

TRUCK (CONGESTED) VEHICLE HOURS TRAVELED BY TIME PERIOD

AM TRUCK CONGESTED VHT 5.38% 18.17% 2.03% 0.47% 4.59% 2.22% 5.23% 1.02% 41.01% 8.95%

MD TRUCK CONGESTED VHT 7.07% 15.12% 1.11% 3.46% 5.96% 1.19% 5.03% -0.80% 62.61% 7.54%

PM TRUCK CONGESTED VHT 4.13% 15.31% -0.24% 0.13% 4.76% 1.06% 4.25% -2.15% 44.07% 6.59%

NT TRUCK CONGESTED VHT 4.99% 19.25% -0.31% -2.04% 5.06% -0.51% 3.37% -1.35% 47.89% 8.81%

TOTAL DAILY TRUCK VHT 5.40% 16.92% 0.53% 0.40% 5.11% 0.77% 4.42% -0.98% 50.19% 7.90%

DAILY DELAY HOURS

AM Delay 1.25% 3.35% 0.84% -0.09% 0.99% 0.25% 1.19% 0.57% 9.81% 2.37%

MD Delay 3.80% 7.35% 1.12% 2.20% 2.23% 1.47% 1.19% -0.21% 53.06% 5.90%

PM Delay 0.86% 2.48% 0.29% 0.47% 0.83% 0.57% 0.73% -0.19% 11.61% 2.53%

NT Delay 5.18% 13.06% 0.86% -1.08% 3.11% 0.89% 2.50% -0.52% 50.35% 6.85%

TOTAL DELAY 1.48% 3.58% 0.55% 0.50% 1.11% 0.59% 0.96% 0.00% 19.19% 3.03%

DAILY FUEL CONSUMPTION BY CAR/TRUCK (GALLONS OF FUEL)

TRUCK FUEL CONSUMPTION 4.65% 18.39% 0.72% 0.80% 4.76% 1.09% 3.96% -0.76% 37.71% 6.90%

TOTAL FUEL CONSUMPTION 0.81% 3.19% 0.15% 0.20% 0.68% 0.22% 0.58% -0.10% 9.02% 1.50%
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Scenario 4 

With a 30% increase of truck volume at external station #2078, the total truck volume in the 

modeling area (20 counties) shows 0.74% increase area wide, while Newton County shows 

highest truck volume increase of 11.67% and Rockdale County hits the second with 6.54% 

increase, which seems to be reasonable since those counties are located between the external 

station and the Atlanta metro core areas along I-20. The adjacent counties such as DeKalb, 

Fulton, Henry, and Clayton, Counties show some truck volume increases as well (2.23%, 

0.69%, 0.53%, and 0.26% respectively).  

 

Figure 49:  Percent Changes in County Truck Volume with Scenario 4 
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Table 85:  Percent Changes in Performance Measures at County Level with Scenario 4 

 

  

PERFORMANCE MEASURE:  VMT VHT for 20 Counties CLAYTON COBB COWETA DEKALB DOUGLAS FULTON GWINNETT HENRY ROCKDALE NEWTON

VEHICLE VOLUME BY MODE

TRUCK 0.74% 0.26% -0.12% -0.56% 2.23% -0.05% 0.69% 0.38% 0.53% 6.54% 11.67%

TOTAL DAILY VEHICLE 0.08% 0.05% 0.02% -0.04% 0.09% -0.01% 0.13% 0.04% 0.07% 0.39% 0.89%

VEHICLE MILES TRAVELED BY MODE

TRUCK 0.81% 0.44% -0.04% -0.05% 2.39% 0.17% 0.45% 0.40% 0.48% 6.98% 13.10%

TOTAL DAILY VMT 0.06% 0.07% -0.02% 0.00% 0.08% -0.01% 0.05% 0.05% 0.06% 0.48% 1.00%

TRUCK VEHICLE MILES TRAVELED BY TIME PERIOD

AM TRUCK VMT 1.11% 0.81% 0.37% -0.48% 2.61% 1.41% 0.53% 0.11% 1.49% 8.09% 13.59%

MD TRUCK VMT 1.06% -0.12% 0.46% 1.32% 2.32% 0.94% 0.97% 1.17% -0.36% 6.59% 11.55%

PM TRUCK VMT 0.07% 0.53% -0.99% -0.67% 2.02% -0.42% -0.11% -1.30% 1.57% 5.34% 12.69%

NT TRUCK VMT 0.84% 0.73% -0.18% -0.71% 2.53% -0.62% 0.27% 0.76% 0.26% 7.79% 14.39%

TOTAL DAILY TRUCK VMT 0.81% 0.44% -0.04% -0.05% 2.39% 0.17% 0.45% 0.40% 0.48% 6.98% 13.10%

TRUCK (CONGESTED) VEHICLE HOURS TRAVELED BY TIME PERIOD

AM TRUCK CONGESTED VHT 1.03% 0.45% 0.26% -0.81% 2.78% 1.75% 0.66% 0.32% 1.75% 7.85% 10.83%

MD TRUCK CONGESTED VHT 1.05% -0.15% 0.29% 1.50% 2.55% 1.30% 1.19% 1.28% -0.79% 6.30% 8.57%

PM TRUCK CONGESTED VHT -0.25% 0.81% -1.14% -1.22% 2.22% -0.68% -0.09% -2.01% 2.38% 4.88% 10.57%

NT TRUCK CONGESTED VHT 0.73% 0.72% -0.35% -1.02% 2.57% -0.85% 0.20% 0.95% 0.24% 6.95% 12.74%

TOTAL DAILY TRUCK VHT 0.61% 0.44% -0.29% -0.28% 2.51% 0.17% 0.47% 0.08% 0.68% 6.38% 10.75%

DAILY DELAY HOURS

AM Delay 0.21% 0.39% 0.16% -0.18% 0.27% 0.11% 0.06% 0.29% 1.01% 1.59% 1.81%

MD Delay 0.52% 1.42% -0.05% 1.31% 1.24% 1.12% 0.12% 0.59% -0.59% 4.43% 3.63%

PM Delay -0.06% 0.26% -0.21% -0.22% 0.20% -0.16% 0.04% -0.33% 0.95% 1.12% 2.08%

NT Delay 0.66% -0.89% -0.37% -0.84% 1.40% -0.52% 0.76% 0.60% 0.50% 7.63% 14.84%

TOTAL DELAY 0.11% 0.36% -0.10% 0.00% 0.38% 0.04% 0.08% -0.03% 0.72% 1.89% 2.86%

DAILY FUEL CONSUMPTION BY CAR/TRUCK (GALLONS OF FUEL)

TRUCK FUEL CONSUMPTION 0.81% 0.44% -0.04% -0.05% 2.39% 0.17% 0.45% 0.40% 0.48% 6.98% 13.10%

TOTAL FUEL CONSUMPTION 0.14% 0.12% -0.02% -0.01% 0.32% 0.02% 0.09% 0.09% 0.13% 1.39% 2.72%
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Scenario 5 

With a 50% increase of truck volume at external station #2078, the model shows 1.14% area 

wide truck volume increase. Similar to Scenario 4, counties most impacted from the volume 

changes are Newton (19.61%), Rockdale (10.98%), and DeKalb (3.21%). Accordingly, the other 

performance measures such as VMT, VHT, truck VMT, daily delay hours, and truck fuel 

consumption increase significantly in those counties. Table 86 shows the percent changes in 

performance measures at the county level with Scenario 5 compared to 2040 base result of the 

tour model. 

 

Figure 50:  Percent Changes in County Truck Volume with Scenario 5 
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Table 86:  Percent Changes in Performance Measures at County Level with Scenario 5 

 

  

PERFORMANCE MEASURE:  VMT VHT for 20 Counties CLAYTON COBB COWETA DEKALB DOUGLAS FULTON GWINNETT HENRY ROCKDALE NEWTON

VEHICLE VOLUME BY MODE

TRUCK 1.14% 0.41% -0.13% -1.13% 3.21% -0.22% 1.08% 0.31% 1.04% 10.98% 19.61%

TOTAL DAILY VEHICLE 0.08% 0.07% 0.02% -0.09% 0.12% 0.01% 0.07% 0.03% 0.14% 0.65% 1.46%

VEHICLE MILES TRAVELED BY MODE

TRUCK 1.26% 0.56% 0.00% -0.20% 3.54% 0.19% 0.68% 0.38% 0.81% 11.78% 21.99%

TOTAL DAILY VMT 0.08% 0.08% 0.01% -0.02% 0.12% 0.00% 0.05% 0.06% 0.12% 0.81% 1.68%

TRUCK VEHICLE MILES TRAVELED BY TIME PERIOD

AM TRUCK VMT 1.68% 0.64% 0.64% -0.99% 3.66% 2.19% 1.04% 0.30% 2.44% 11.61% 21.19%

MD TRUCK VMT 1.72% 0.56% 0.54% 1.24% 3.59% 0.76% 1.41% 1.46% 0.23% 11.63% 21.02%

PM TRUCK VMT 0.49% 0.13% -1.10% -0.81% 3.09% -0.43% 0.23% -1.14% 1.27% 10.31% 19.93%

NT TRUCK VMT 1.09% 0.74% -0.18% -0.79% 3.68% -0.68% 0.10% 0.30% 0.44% 12.83% 24.11%

TOTAL DAILY TRUCK VMT 1.26% 0.56% 0.00% -0.20% 3.54% 0.19% 0.68% 0.38% 0.81% 11.78% 21.99%

TRUCK (CONGESTED) VEHICLE HOURS TRAVELED BY TIME PERIOD

AM TRUCK CONGESTED VHT 1.57% 0.43% 0.52% -1.91% 4.09% 2.04% 1.14% 0.56% 3.06% 11.32% 16.57%

MD TRUCK CONGESTED VHT 1.65% 0.49% 0.49% 1.46% 3.68% 0.78% 1.48% 1.69% 0.02% 10.93% 16.77%

PM TRUCK CONGESTED VHT 0.20% 0.35% -1.15% -1.66% 3.10% -0.58% 0.37% -1.68% 2.08% 9.69% 16.06%

NT TRUCK CONGESTED VHT 0.88% 0.70% -0.35% -1.66% 3.55% -0.97% -0.04% 0.45% 0.52% 11.74% 21.83%

TOTAL DAILY TRUCK VHT 1.03% 0.51% -0.19% -0.76% 3.55% 0.06% 0.71% 0.20% 1.14% 10.91% 18.32%

DAILY DELAY HOURS

AM Delay 0.41% 0.59% 0.18% -0.29% 0.51% 0.21% 0.30% 0.50% 1.47% 2.26% 3.23%

MD Delay 0.60% 0.54% 0.47% 0.93% 1.20% 0.85% -0.12% 0.97% -0.05% 8.02% 7.50%

PM Delay 0.04% 0.10% -0.14% -0.22% 0.29% -0.05% 0.08% -0.18% 1.12% 2.37% 2.96%

NT Delay 0.74% -0.12% 0.01% -1.33% 2.05% -0.58% 0.26% 0.13% 0.35% 12.59% 26.65%

TOTAL DELAY 0.23% 0.27% 0.02% -0.12% 0.51% 0.10% 0.11% 0.14% 1.00% 3.37% 4.87%

DAILY FUEL CONSUMPTION BY CAR/TRUCK (GALLONS OF FUEL)

TRUCK FUEL CONSUMPTION 1.26% 0.56% 0.00% -0.20% 3.54% 0.19% 0.68% 0.38% 0.81% 11.79% 21.99%

TOTAL FUEL CONSUMPTION 0.22% 0.14% 0.00% -0.05% 0.47% 0.03% 0.11% 0.09% 0.24% 2.34% 4.56%
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Scenario 6 

With a 70% increase of truck volume at external station #2078, the model shows 1.56% area 

wide truck volume increase. Similar to Scenario 4 and 5, counties mostly impacted from the 

volume changes are Newton (27.95%), Rockdale (15.14%), and DeKalb (4.43%).   Accordingly, 

the other performance measures such as VMT, VHT, truck VMT, daily delay hours, and truck 

fuel consumption also increased significantly in those counties.  

 

 

 Figure 51:  Percent Changes in County Truck Volume with Scenario 6 
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Table 87:  Percent Changes in Performance Measures at County Level with Scenario 6 

 

 

Scenarios with ARC’s Trip-based Model  
 

Unlike the proposed tour-based truck model, the current ARC trip-based model does not directly 

use the external station truck volumes (external.prn) as an input file. Instead, the model uses 

proportions of external and through traffic volume (parameters\externals.dbf) which sum up to 

1.0 for each external station. The following equation is applied to every external station: 

 
1.00 = PCTINTWK + PCTINTNW + PCTNINTW + PCTNINTN + CAREE + COMIE  
           + COMEE + MTKIE + MTKEE + HTKIE + HTKEE 
 

The variables involved are as follows: 

PCTINTWK:  Proportion of IE passenger car work (interstate) 
PCTINTNW:  Proportion of IE passenger car non-work (interstate) 
PCTNINTW:  Proportion of IE passenger car work (non-interstate) 
PCTNINTN:  Proportion of IE passenger car non-work (non-interstate) 
CAREE:  Proportion of EE passenger car  
COMIE:  Proportion of IE commercial vehicle  
COMEE:  Proportion of EE commercial vehicle  

PERFORMANCE MEASURE:  VMT VHT for 20 Counties CLAYTON COBB COWETA DEKALB DOUGLAS FULTON GWINNETT HENRY ROCKDALE NEWTON

VEHICLE VOLUME BY MODE

TRUCK 1.56% 0.16% -0.34% -1.08% 4.43% -0.44% 1.39% 0.38% 1.20% 15.14% 27.95%

TOTAL DAILY VEHICLE 0.09% 0.12% 0.01% -0.07% 0.12% -0.01% 0.04% 0.06% 0.21% 0.92% 2.03%

VEHICLE MILES TRAVELED BY MODE

TRUCK 1.76% 0.41% -0.20% 0.04% 5.05% 0.28% 0.82% 0.46% 0.93% 16.33% 31.22%

TOTAL DAILY VMT 0.11% 0.09% -0.01% 0.00% 0.15% -0.01% 0.05% 0.07% 0.18% 1.12% 2.37%

TRUCK VEHICLE MILES TRAVELED BY TIME PERIOD

AM TRUCK VMT 2.36% 0.57% 0.95% 1.96% 4.30% 3.54% 1.32% 0.30% 2.65% 14.96% 30.45%

MD TRUCK VMT 1.89% -0.25% 0.32% 1.15% 5.16% -0.43% 1.19% 0.93% -0.17% 15.34% 29.66%

PM TRUCK VMT 1.15% -0.33% -0.83% -1.45% 4.24% 0.12% 0.27% -0.17% 1.43% 14.07% 30.18%

NT TRUCK VMT 1.70% 1.31% -0.86% -0.84% 5.77% -0.24% 0.54% 0.47% 0.94% 19.09% 33.33%

TOTAL DAILY TRUCK VMT 1.76% 0.41% -0.20% 0.04% 5.05% 0.28% 0.82% 0.46% 0.93% 16.33% 31.22%

TRUCK (CONGESTED) VEHICLE HOURS TRAVELED BY TIME PERIOD

AM TRUCK CONGESTED VHT 2.19% 0.10% 0.89% 1.87% 4.94% 3.43% 1.45% 0.29% 3.58% 14.39% 24.65%

MD TRUCK CONGESTED VHT 1.66% -0.50% 0.18% 0.79% 5.12% -0.75% 1.35% 0.87% -0.32% 14.59% 24.65%

PM TRUCK CONGESTED VHT 0.85% -0.35% -0.99% -2.16% 4.25% -0.23% 0.32% -0.51% 2.45% 13.37% 25.15%

NT TRUCK CONGESTED VHT 1.46% 1.22% -1.04% -1.82% 5.67% -0.78% 0.54% 0.57% 1.12% 17.85% 31.15%

TOTAL DAILY TRUCK VHT 1.48% 0.16% -0.33% -0.56% 4.97% 0.01% 0.86% 0.29% 1.40% 15.21% 26.96%

DAILY DELAY HOURS

AM Delay 0.50% 0.58% 0.33% 0.17% 0.66% 0.69% 0.27% 0.46% 1.61% 3.20% 4.26%

MD Delay 0.59% 1.65% 0.20% 0.21% 1.44% -0.13% 0.00% 0.48% 0.07% 11.22% 10.45%

PM Delay 0.19% 0.31% -0.16% -0.37% 0.42% -0.07% 0.13% 0.06% 1.48% 3.44% 4.74%

NT Delay 1.41% 0.20% -0.03% -1.20% 3.29% 0.43% 0.78% 0.42% 1.08% 18.83% 40.40%

TOTAL DELAY 0.36% 0.51% 0.01% -0.17% 0.69% 0.17% 0.16% 0.22% 1.29% 4.85% 7.20%

DAILY FUEL CONSUMPTION BY CAR/TRUCK (GALLONS OF FUEL)

TRUCK FUEL CONSUMPTION 1.76% 0.41% -0.20% 0.04% 5.05% 0.28% 0.82% 0.46% 0.93% 16.33% 31.22%

TOTAL FUEL CONSUMPTION 0.30% 0.13% -0.03% 0.00% 0.65% 0.04% 0.12% 0.12% 0.31% 3.24% 6.46%
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MTKIE:  Proportion of IE medium duty truck  
MTKEE:  Proportion of EE medium duty truck  
HTKIE:  Proportion of IE heavy duty truck  
HTKEE:  Proportion of EE heavy duty truck  

 
In order to apply the similar scenarios as used with the tour model, the proportions of the four 

variables (MTKIE, MTKEE, HTKIE, and HTKEE) have been modified by applying scenario 

factors of 1.3 (30% increase), 1.5 (50% increase), and 1.7 (70% increase) and the proportions 

normalized to make them sum to 1.0 for each external station.  Although these are not exactly 

the same controllable values which have been incorporated in the tour model, the results may 

be used to produce a set of performance measures to simulate how potential changes in 

external and through truck volumes to the modeling area affect the dynamics of internal truck 

movements within the modeling area for comparison with the results obtained from the Tour-

based model as reported in the previous section. 

Table 88:  Selected Scenarios and External Truck Shares 

External 
Station PCINTWK PCINTNW PCNINTW PCNINTN CAREE COMIE COMEE MTKIE MTKEE HTKIE HTKEE 

2078 0.1852 0.2419 0.0000 0.0000 0.3030 0.0341 0.0026 0.0349 0.0090 0.0985 0.0908 

Scenario 1 0.1731 0.2261 0.0000 0.0000 0.2832 0.0319 0.0024 0.0424 0.0109 0.1197 0.1103 

Scenario 2 0.1659 0.2166 0.0000 0.0000 0.2714 0.0305 0.0023 0.0469 0.0121 0.1323 0.1220 

Scenario 3 0.1592 0.2080 0.0000 0.0000 0.2605 0.0293 0.0022 0.0510 0.0132 0.1440 0.1327 

            
2087 0.2368 0.3094 0.0000 0.0000 0.1978 0.0078 0.0006 0.0133 0.0034 0.0731 0.1578 

Scenario 4 0.2204 0.2880 0.0000 0.0000 0.1841 0.0073 0.0006 0.0161 0.0041 0.0885 0.1910 

Scenario 5 0.2107 0.2753 0.0000 0.0000 0.1760 0.0069 0.0005 0.0178 0.0045 0.0976 0.2106 

Scenario 6 0.2018 0.2637 0.0000 0.0000 0.1686 0.0066 0.0005 0.0193 0.0049 0.1059 0.2286 

 

Similar to the scenarios with the tour model, the research team applied three hypothetical 

volume increases (30%, 50%, and 70%) to those selected external stations (#2087 and #2078), 

and the same set of performance measures has been developed in order to evaluate the results 

for each scenario, which include: (1) vehicle volume by mode, (2) vehicle miles traveled (VMT) 

by mode, (3) truck vehicle miles traveled by time period, (4) VMT per capita, VMT per 
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household, VMT per job, (5) VHT per capita, VHT per household, VHT per job, (6) truck vehicle 

hours traveled (VHT) by time period, (7) daily delay hours, (8) average highway speeds, (9) 

daily fuel consumption by mode, (10) Percent VMT by level-of-service, etc. The performance 

measures were calculated and summarized by county. The results are included in Appendix.  

 

Findings  
 

In this section, the research team attempted to show different results using both current ARC 

trip-based model and the newly developed tour-based model.  Although it is not the intent of this 

study to demonstrate that the tour-based model structure is superior to the trip-based structure 

based on empirical validation (due to some significant gaps in the observed or reported data), it 

should be self-evident that modeling discrete tours is more realistic than modeling zonal 

averages.  The model works in a manner closer to the way travel decisions are made in the real 

world.  More empirical evidence is needed and will be provided once tour-based truck modeling 

approaches get better data to support them, and become more popular and implemented in 

planning processes.        
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SECTION V. PLANNING APPLICATION: Birmingham  

 

Application of the Tour-Based Freight Model in Birmingham 
 

For this study, the Regional Planning Commission of Greater Birmingham (RPC-GB) year 2035 

planning model was used as a base for comparison with the new tour-based freight model. The 

RPC 2035 model is a traditional 4-step trip-based model that has been calibrated to 2008 traffic 

volumes. The RPC model does not explicitly include a freight model, rather it generates truck 

trips by applying a standard factor to overall vehicle trip productions. The RPC model also does 

not classify trucks into subgroups (such as those used in the FHWA 13-bin vehicle classification 

system) nor does it distinguish between medium and heavy trucks and general commercial 

vehicles. 

The new tour-based freight model of the Birmingham region offers several potential 

improvements over the existing model. First, it provides classification of trucks into medium and 

heavy vehicles. This allows for more detailed analysis of truck travel patterns, particularly long-

haul vs. local movements. Second, the new tour-based freight model was developed using 

actual GPS data provided by ATRI, thus the model predicts the truck traffic closely to the 

observed data. 

The Birmingham tour based freight model was built on the RPC year 2035 regional planning 

model dataset. Although RPC has since created a 2040 model with updated analysis zones, the 

tour based freight model was developed using the 2035 models and therefore all comparisons 

are made using it.   
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Issues with Transfer of the Proposed Modeling Framework 
 

There were several issues encountered when transferring from RPC’s current trip-based model 

to the tour-based freight model. First, the-tour based model was developed using ATRI’s 2010 

truck GPS database, which was built on a 999 traffic analysis zone (TAZ) system. Although 

RPCGB’s 2035 model was built on the same 999 TAZ system, the model was developed using 

2008 socioeconomic and traffic data, which meant the results would not be directly comparable 

to the tour-based model. Moreover, the RPC model did not include any time-of-day (TOD) 

component. To address these issues for this study, RPC’s 2035 model was redeveloped using 

2010 socioeconomic and traffic data. Also, a TOD model was inserted into the 2035 modeling 

so that outputs could be directly compared with the tour-based model. 

RPC has recently developed a year 2040 planning model based on 2010 census data, which 

necessitated the expansion of the MPA (metropolitan planning area). As a result, the number of 

traffic analysis zones (TAZ’s) was increased from 999 to 1934. The 2040 model also includes a 

TOD component. The newly developed tour-based freight model can be modified for the new 

1934 zone system, however the main truck data source, the ATRI database, was built on an 

older 999 zone system and therefore an equivalency table will be needed between old and new 

TAZ systems. An attempt was made to develop such a table as part of this project, but the 

conversion from the 999 zone system to the 1934 zone system was not straightforward and 

necessitated a zone by zone evaluation that required more effort than was available for this 

study.  It is recommended that this conversion be performed as part of future applications of the 

tour-based model.  
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Comparisons of Model Outputs 
 

The RPC trip-based model and the new tour-based model were run and the results were 

compared across a variety of outputs. Some of the key findings are presented in the following 

sections. 

Vehicle Miles Traveled by Mode and Time Period 

Total VMT across the network was compared for each model. VMT by mode is presented in 

Table 89. Overall VMT across the network as well as the modal split of VMT were similar across 

the two models. However, the trip-based model tended to overestimate truck VMT, which may 

be a result of the truck factor applied to productions to generate truck trips. 

Table 89:  Vehicle Miles Traveled (VMT) by Mode 

Vehicle Miles Traveled by 

Mode 

Trip Base 

Model 

Tour Based 

Model 

SOV VMT 22,601,310 24,233,649 

HOV VMT 3,052,640 3,617,879 

TRUCK VMT 2,552,040 1,511,619 

Total Daily VMT 28,205,990 29,363,147 

 

Overall VMT by time of day shows the trip-based model generating slightly more VMT during 

the daytime but less during the night, as shown in Table 90. This effect is particularly 

pronounced when looking specifically at truck VMT in Table 91, where the trip-based model 

significantly overestimated daytime truck VMT but underestimated nighttime truck VMT. While 

much of the overestimation of truck VMT during the daytime is related to the general 

overestimation of truck VMT in the trip-based model, this discrepancy between daytime and 

nighttime truck VMT is significant and was found in the Atlanta model as well. The finding that 

the existing trip-based models are underestimating nighttime truck traffic will have significant 

impacts to the planning process. 
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Table 90:  Vehicle Miles Traveled (VMT) by Time Period 

Vehicle Miles Traveled by 

Time Period 

Trip Base 

Model 

Tour Based 

Model 

AM VMT 4,578,625 4,492,435 

MD VMT 9,916,877 9,798,449 

PM VMT 6,270,139 6,637,723 

NT VMT 7,440,349 8,434,540 

Total Daily VMT 28,205,990 29,363,147 

 

Table 91:  Truck VMT by Time Period 

Truck Vehicle Miles 

Traveled by Time Period 

Trip Base 

Model 

Tour Based 

Model 

AM Truck VMT 508,074 119,122 

MD Truck VMT 2,687,053 467,740 

PM Truck VMT 378,950 246,216 

NT Truck VMT 400,964 678,541 

Total Daily Truck VMT 2,552,040 1,511,619 

 

 

Truck Volumes 

Comparisons were also made between truck volumes generated by each model. Figure 52 

shows truck volumes on the regional network as generated by the new tour-based model. As 

expected, the heaviest truck volumes were found in the major freight corridors, including I-65, I-

20/59, I-459, and US 280. As was found in the comparison of truck VMT, the trip-based model 

generated significantly higher daily truck volumes than did the tour-based model (see Figure 

53). This is likely the result of the method used to generate truck trips in the trip-based model, 

and the fact that the trip-based model does not classify trucks by type or differentiate them from 

general commercial vehicles. Figure 54 through Figure 56 compare truck volumes for the AM, 

Mid-Day, and PM peak periods and show the same patterns as were found with truck VMT, 
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which is that the trip-based model consistently generates higher truck volumes than the tour-

based model did. 

Figure 57 presents a comparison of truck volumes for night-time hours, and shows that the tour-

based model generates higher truck volumes during the overnight hours. This mirrors the 

findings found in the comparisons of truck VMT and suggest that the existing trip-based model 

has been significantly underestimating night-time truck traffic.  

 

Figure 52:  Daily truck volumes (tour-based model) 
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Figure 53:  Daily truck volumes (trip-based vs. tour-based model) 
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Figure 54:  Trip-based vs. tour-based link volume comparison (AM Peak) 

 

 

 

Figure 55:  Trip-based vs. tour-based link volume comparison (Mid-Day Peak) 
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Figure 56:  Trip-based vs. tour-based link volume comparison (PM Peak) 

 

 

 

 

Figure 57:  Trip-based vs. tour-based link volume comparison (Night) 

 



254 
 
 

Truck VMT by Area Type 

Truck VMT was summarized by area type as shown in Table 92. The results show that the trip-

based model consistently overestimated truck VMT in urban areas, but underestimated it in rural 

areas when it is compared to the tour-based model. As mentioned before, RPC’s trip-based 

model does not distinguish between medium and heavy trucks and general commercial 

vehicles. Therefore, truck VMT in the trip based model presents commercial vehicle and/or 

delivery truck predictions in urban areas, while the tour-based model reports only medium and 

heavy truck traffic VMT. 
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Table 92:  Daily Truck VMT by Area Type 

Area Type 
Trip Base Model Tour Based Model 

Percent 
Difference Truck VMT Daily Truck VMT Daily 

Central Business District Major  146,297 25,502 82.57% 

Central Business District Minor  58,207 16,778 71.18% 

Central Business District Fringe  48,154 9,843 79.56% 

Urban Stable  325,679 71,647 78.00% 

Urban Activity Center  630,894 193,234 69.37% 

Urban Growth  1,013,902 638,063 37.07% 

Transitioning to Urban  164,124 247,062 -33.57% 

Rural Developed  100,239 221,584 -54.76% 

Rural Undeveloped  64,545 87,905 -26.57% 

 

 

Area Type Description Density Range 

Central Business District Major  Greater or equal to 20.00 

Central Business District Minor  15.00 to 20.00 

Central Business District Fringe  12.00 to 15.00 

Urban Stable  8.00 to 12.00 

Urban Activity Center  5.00 to 8.00 

Urban Growth  1.00 to 5.00 

Transitioning to Urban  0.50 to 1.00 

Rural Developed  0.25 to 0.50 

Rural Undeveloped  Less than 0.25 
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Findings 
 

There were several key findings resulting from the study that will have direct application to the 

planning and modeling process in Birmingham: 

 The current RPC models overestimate truck volumes and truck VMT, particularly during 

daytime hours. The tour-based freight model will provide more accurate projections of 

truck volumes and VMT. 

 

 Despite the fact that the RPC trip-based model overestimates daily truck volumes and 

VMT, it appears to underestimate truck volumes during nighttime hours. The tour-based 

model indicates that a greater proportion of truck traffic occurs at night than has currently 

been assumed. 

 

 The RPC trip-based model also appears to underestimate truck traffic in rural areas. A 

change to the tour-based model may yield more accurate projections for rural and urban 

areas. 

The research team recommends further study to refine the tour-based freight model and 

understand its implications for the planning process in Birmingham: 

 Modify the tour-based model to run with RPC’s current year 2040 model. This will 

require expanding it to run on the new 1934 TAZ network and developing conversion 

tables to map the truck model and ATRI data to the new zone system. Since the new 

RPC 2040 model already includes a TOD component, this should provide a better 

framework to compare model outputs and test the impacts on the long range planning 

process. 
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 Test the new tour-based model with different planning scenarios and compare the 

outputs to current trip-based model projections. For the Birmingham Region, these 

scenarios could include: 

 

o Testing the impacts of the proposed Northern Beltline 

o Testing the impacts of a relocation of I-20/59 through downtown 

o Testing the impacts of the completion of I-22 on freight movements through the 

Birmingham area 

o Modeling the impacts of freight growth in the I-20/59 corridor. 
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SECTION V. RECOMMENDATION  

Lessons Learned  
 

The project provides a framework for MPOs and DOTs to build freight demand models that 

account for truck touring behavior, and it demonstrates how GPS-derived truck movement data 

can support freight forecasts. The project also provides a series of lessons learned, both about 

steps to improve tour-based freight models and limitations that still have to be addressed in 

other modeling approaches. The lessons relate to data availability and analysis, as well as 

model construction.  The primary lessons learned are summarized as follows: 

1. Freight Modeling Remains Underutilized in Most MPOs: MPOs should be able to 

perform independent freight demand modeling activities for traffic forecasting. MPO 

freight modeling is important not only because of freight’s rapidly increasing share of 

total roadways traffic, but also because of freight’s unique travel patterns compared with 

passengers. Even though modeling can help MPOs to more accurately develop plans 

with future truck volumes, 64% of the MPOs surveyed stated that they do not model 

freight movement. Of those that do, lack of data remains one of the primary obstacles in 

developing freight demand models, and more MPO respondents say that they are 

seeking to improve their data sources than realize any other modeling improvements.  

Despite this need, only 19% of the MPOs surveyed which have a trip-based freight 

model also employed GPS-derived data in their model.  It is very important to implement 

data sources that are accurate and accessible for more MPOs to adopt freight modeling.  

 

2. Tour-Based Freight Modeling Retains a Theoretical Advantage over Trip-Based 

Modeling: Tour-based modeling is theoretically more robust than trip-based modeling 

because it accounts for distribution channels and trip-chaining behavior to more 
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realistically capture the vehicle movements and motor carriers’ decision making. Since 

tour-based models can capture truck travel behavior more accurately, they provide more 

reliable results. However, due to their intense processing and data requirements, only a 

few MPOs in the US use tour-based freight models. Many MPO respondents expressed 

the need for more truck data to support their freight modeling. Better data might also 

allow more MPOs to forecast freight demand, including via emerging sophisticated 

methods like tour-based models. 

 

3. Tour-Based Truck Movement Models Capture Underlying Freight Movement 

Relationships More Completely than Conventional Models: Though the differences 

in the total truck volumes projected by the trip-based and tour-based freight models 

remain small, it is observed that there is a significant variation between these two types 

of models in terms of truck volumes by route and by time of day. It is hard to determine 

one model’s forecasting superiority to the other due to the lack of reasonable observed 

truck data, which can specify the model more accurately. However, the tour-based 

model’s stronger theoretical foundation and the GPS data inputs show that the tour-

based freight demand model likely assigns the truck volumes more realistically. 

Comparing tour-based results with the existing freight models can provide potential 

improvements and directions for future research. The distinct differences between the 

truck traffic estimation results of the two models emphasize the necessity of supporting 

the decision-making with well- developed models. 

 

4. GPS-Derived Truck Movement Data Is a Viable Data Source: GPS-derived truck data 

is used in a small minority of MPO freight models, but it can provide detailed truck travel 

diary data for disaggregate freight models, including tour-based freight models.  
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However, GPS data itself can be computationally intensive due to the required data 

quantity and the need for complex algorithms for processing raw data. 

 

5. The Data Analysis Revealed Important Socio-Demographic, Descriptive, and 

Temporal Characteristics of Truck Movement: The analyses of GPS truck sample 

data, which is employed by the tour-based freight demand modeling in this study, have 

revealed several important travel patterns of trucks, which are listed as following: 

 

 Socio-Demographic: In addition to the socio-demographic variables that are 

often included in the four-step personal travel demand modeling, such as 

population and households, truck tour generation is highly associated with 

specific categories of employment, including (1) wholesale employment, (2) 

finance, insurance, real estate employment, and (3) transportation, 

communication, utilities employment. The identified truck zones will have very 

different tour generation patterns and need to be addressed based on each 

employment type’s prevalence. The difference between truck tour and passenger 

travel trip generation reemphasizes the need for modeling trucks independently, 

rather than applying truck trip rates to total personal demand model result.  This 

study also highlights the importance of having suitable stratifications of 

employment by zone and the availability of Census data to help with that task.  

 Descriptive: More than half of trucks touring in Atlanta and Birmingham metro 

area have intermediate stops during one tour. This pattern shows that trip 

chaining behavior is a common phenomenon and needs to be adequately 

addressed in freight demand modeling. The number of intermediate stops made 

by trucks varies by tour type, which reflects the need to employ different trip-
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chaining models (models to determine the number of intermediate stops and their 

locations) by tour endpoints, such as Internal-External (I/X), Internal-Internal (I/I) 

and External-External (X/X). The variation also illustrates the advantage of using 

a tour-based rather than a trip-based model. 

 Temporal: Truck tours follow different time distributions and have different peak 

hours from passenger tours, indicating the need to separate truck modeling from 

passenger travel demand modeling. Several factors, including tour O-D direct 

travel time, accessibility to employment at the tour origin and 

destination, whether the tour origin is urban or rural, and whether the tour is 

round-trip, have been identified to significantly affect the start time of truck tours. 

This manifests the necessity of employing tour-based truck modeling instead of 

trip-based modeling, so that different tours can modeled to start at different time 

of day according to its unique characteristics.  

 

6. Improving Truck Movement Data Will Have Limited Impact if Pursued in Isolation 

from Broad Modeling and Data Improvements:  Sophisticated freight demand models 

should be approached holistically in terms of data and data forecasting improvements for 

the explanatory variables. The ability to add explanatory relationships relies on available 

and accurate data for independent variables at the right geographical scales.  Moreover, 

no model can consistently forecast a dependent variable any more accurately than the 

forecasted independent variables. Likewise, GPS-derived truck movement data greatly 

improved data availability for modelers, but it does not obviate the need for 

improvements in other modeling data.  A particular challenge in the models as applied 

remains when data is obtained at the TAZ level.  Moreover, data needs to be detailed 

enough.  For example, employment data by detailed sectors is preferable to the total 
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employment data in a TAZ (or even the commonly-used retail/non-retail split of 

employment).  A final process that requires attention is the identification of special 

generator truck zones, which should be as complete and objective as possible. 

 

7. GPS Data Processing Should Carefully Preserve Data Completeness and 

Representativeness: GPS-derived truck data must be processed prior to its use, but 

the processing should not degrade the data’s representativeness.  Increasing the size of 

sample truck data is particularly important to better represent the entire truck population. 

While it is sometimes necessary to use the existing model to scale up the sample data, it 

is more ideal to use observed data.  Scaling up based on observed data makes the tour-

based model’s accuracy independent of the existing model’s accuracy. 

 

8. Tour-Based Modeling Can Provide Forecast Data for Numerous Planning 

Functions: This research’s primary objective is developing a tour-based truck network 

model framework utilizing truck GPS data and using this framework for MPO 

applications in the Atlanta and Birmingham metropolitan areas.  The model can also 

serve applications including— 

 Truck traffic volume forecasting in conjunction with observed multi-stop truck 

travel behavior, 

 Analysis at various geographic levels (e.g., MPO, county, TAZ, etc.) and 

comparisons of relative magnitudes of a region’s truck traffic by sub-areas, area 

types, and highway functional classifications including urban and rural 

interstates, major and minor arterials, collectors, and local roads,  

 Intercity and inter-regional corridor level studies to identify the relative size of 

interstate truck flows from major origins and destinations, 
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 Truck traffic impact studies on detour routes resulting from potential roadway 

projects, 

 Scenario planning with performance measure comparison. 

 

 

Tour-Based vs. Trip-Based Models 
Advantages 

Tour-based freight demand models present several advantages compared to traditional trip-

based models.  The primary advantage is that tour-based models more precisely match the 

travel behavior that they model.  This benefit has several different components. 

 Tour-based models account for fundamental differences between passenger and 

cargo transportation: Tour-based models can more accurately forecast truck 

movements than models that account for each trip separately because many truck trips 

are parts of tours.  Trip-based models, which were developed for passenger vehicles, 

are often mismatched to correctly describe freight behavior since passenger and cargo 

vehicles behave inherently differently. 

 Tour-based models capture freight decision making dynamics: Tour-based models 

better capture freight carriers’ delivery strategy better than trip-based models.  For 

example, Ruan et al. (2012) believe that tour-based models can provide more details 

about a carriers’ distribution strategy, distribution channels, and item bundling than trip-

based models.  While tour-based models include fewer details than logistics models, 

they nonetheless incorporate more supply chain decision characteristics than traditional 

models. 

 Tour-based models lay the foundation for other model improvements: Tour-based 

models lay the groundwork for future changes that will more completely capture complex 
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freight movement decisions.  Modeling evolves progressively, meaning that each 

improvement builds the technical skills required for the next improvement.  One of the 

improvements that tour-based models may prepare for are tour-based micro simulation 

models.  Many tour-based models generate and distribute tours at the TAZ level.  

Conversely, micro simulation models each freight agency separately.  Tour-based micro 

simulation models similar to Hunt and Stefan's (2007) Calgary model can simulate 

different freight related decision making, expense, and value-of-time dynamics for each 

truck generated. 

Challenges 

When using the proposed model, there are several limitations that should be evaluated.  

Limitations are primarily related to the nature of modeling.  More sophisticated models allay 

modeling’s inherent challenges without eliminating them altogether.  Specifically— 

1. Modeling can be no more accurate than the relationships that are Included:  

Models usually posit that a dependent variable (e.g., truck travel) depends on a variety 

of independent variables at a certain geographical scale (e.g., population and 

employment data at the TAZ level).  A model is accurate to the extent that the 

independent variables accurately and completely forecast the dependent variable, and 

inaccuracies will appear to the extent that the relationships are incomplete, important 

independent variables are omitted, and present or forecasted independent variable data 

is inaccurate or unavailable.  A tour-based truck model models truck behavior more 

precisely than conventional models.  Moreover, GPS truck data strengthens the model 

by enhancing dependent variable precision.  However, the model remains dependent on 

the relationships being modeled.  No single model addition or data improvement can be 

a panacea. 
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2. The dependent variable forecasts (e.g., Truck Travel) can be no more accurate 

than the independent variable forecasts (e.g., Population, Employment):  

Inaccurate independent variable forecasts will not accurately and consistently forecast 

the dependent variable even with perfectly sophisticated models.  Therefore, it is 

necessary to improve forecasting across the board while improving model’s 

sophistication. 

 

3. While the two previous limitations are Inherent to all models, there are also many 

particular limitations that modelers can encounter when applying a tour-based 

truck model:  These tour-based truck models encountered several limitations as 

applied. The lack of data drove several challenges.  For example, data unavailability 

prevented the models from generating truck trips in a fully disaggregate fashion, which 

would have required an inventory of all trucks.  Instead, in this project, the models used 

a zonal aggregate model of the number of tour starts.  It is common that unavailable 

data requires modelers to alter the model or process the available data that fits the 

model, often at the cost of forecasting robustness. 

GPS Data 
Advantages 

GPS truck movement data can serve many types of freight or passenger travel demand models, 

including tour-based models.  As such, GPS movement data is not only valuable for its role in 

tour-based freight models.  Some of the greatest advantages over other types of freight data 

include— 

 Data Availability: GPS devices provide precise and comprehensive data without 

burdening the companies whose data is being reported. Many passenger travel demand 

models rely on self-report travel diaries to explain where and when a person has 
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traveled. While travel diaries may also provide truck information, truck movement data is 

very hard to obtain because commercial freight companies are reluctant to share their 

private operational information for fear of revealing trade secrets and because of the 

burden that travel diaries can impose on drivers. GPS data can eliminate driver burden, 

although it is not sufficient to assuage all privacy concerns.  Carefully scrubbing data to 

cover company and driver identity can help alleviate concerns and encourage data 

sharing. 

 Data Disaggregation: GPS data has the potential to provide more detailed trip 

information than roadside truck counts, which cannot provide details on specific truck 

types or trips, and more complete information than travel demand diaries, which depend 

on drivers taking the time to fill in at each destination. GPS data can provide detailed 

movement information with exact times, locations, and speeds following specific vehicles 

across an operational area. 

 Data Reliability:  GPS data can produce more reliable truck movement information than 

travel diaries because it does not depend on driver memory or effort. Trips can only be 

omitted if the satellite connection is lost or if there is an equipment malfunction, whereas 

travel diaries may omit trips when the driver forgets or is too busy to record them.  

Moreover, GPS data provides more precise time and speed information, which may 

often be rounded in travel diaries for convenience. 

 Adaptability to Other Uses: GPS data can support other transportation initiatives 

besides travel demand models.  For example, researchers have used GPS truck 

movement data to develop roadway performance measures in Washington state 

(McCormack et al. 2010), Georgia (Southworth and Gillette 2011), U.S. interstate 

highways (Federal Highway Administration 2006), the United Kingdom (Hudson and 

Rhys-Tyler 2004), Australia (Greaves and Figliozzi 2008), and South Africa (Joubert and 
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Axhausen 2011). GPS data can also be combined with truck weight to assist in 

pavement management, or input into truck emissions models (Greaves and Figliozzi 

2008). 

Challenges 

This project confirms several challenges of using GPS data, though in most cases we were able 

to overcome them. 

 Obtaining Proprietary Movement Data: Whereas past studies have approached 

trucking companies to directly request data, this project used GPS data assembled and 

processed by the American Transportation Research Institute (ATRI).  Many companies 

are reluctant to share movement data due to privacy concerns.  Obtaining anonymized 

data from a central source ensured uniform formatting, made the sample more 

representative of all trucks, and eased legal hurdles with obtaining proprietary movement 

data. 

 Lack of Commodity and Truck Characteristics Data: GPS data determines a truck’s 

precise location and speed and set time intervals.  However, GPS data does not reveal 

the commodities that a truck is carrying nor the vehicle class.  More detailed information 

on truck characteristics including truck classification and commodities carried would 

make GPS data more useful for modeling. 

 Identifying Tour Endpoints: GPS data must be analyzed to identify trip start and end 

points, since they are not marked as such in trip diaries. The analysis used in this project 

identified tour starts by comparing adjacent records until the first records showing 

movement out of a travel analysis zone were located. The tour ends were identified 

when the truck returned to the zone where it had begun, or at midnight.  It is important to 

adjust identification algorithms and when possible check manually for best results. 
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 Lost and Inaccurate Data: The GPS data included inconsistencies in the start/end 

locations and the time stamps. For example, some trucks were recorded as moving from 

one zone to another without the passage of any time. In these cases, the preceding and 

subsequent records were examined to locate the error. Trucks with unreasonably 

recorded or implicit speeds were dropped. Data processing reduced the total number of 

records but produced better data for each day.  

Differences between Old and New Models 
Atlanta Regional Commission 

The tour-based freight model for Atlanta includes several improvements compared with past 

models. 

 Tour Component: The new model can account for touring behavior, which the old 

model could not.  Adding tour behavior was one of the project’s primary motivations 

since it more realistically imitates truck behavior and improves forecasting as described 

previously 

 Improved Calibration: The new model is based on GPS data, which is more accurate 

than the truck movement data that past metro Atlanta freight models have used.  

Because the Atlanta Regional Commission did not have data tracking specific truck 

movements, it had instead used an innovative calibration technique called “adaptable 

assignment” to iteratively assign trucks to roads based on roadside counts.  The GPS 

data provides a more complete, reliable, and disaggregate database for use in the tour-

based model or the conventional freight demand model. 

 Through Trips: The Atlanta Regional Commission’s existing freight travel demand 

model was hampered in its ability to estimate through trips due to the lack of detailed 

truck movement data.  Therefore, the existing model relied on a look-up table that 

calculated the probability of a through trip by facility type and truck size.  The GPS data 
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improves through trip calculation by basing through trip calculations on vehicle-specific 

truck movement records. 

 

Regional Planning Commission of Greater Birmingham 

The Birmingham tour-based model benefits from many of the same advantages as the Atlanta 

model, including— 

 Tour Component: The new model can more closely mimic truck trip behavior since it 

includes truck tours. The previous planning models simply estimated truck trips by 

multiplying total trip productions by a standard factor.  It is believed the new tour-based 

model provides more accurate modeling of truck trips. 

 Vehicle Classification: The previous model was not able to differentiate between trucks 

and general commercial traffic. The new model separates these two trip types. 

 Time of Day: The existing Birmingham freight travel demand model did not forecast the 

time of day at which trucks would travel.  This makes it difficult to load roads and predict 

actual congestion since it is unknown how truck trips will be distributed throughout the 

day.  The new Birmingham model includes four time-of-day designations for morning 

peak, mid-day, evening peak, and nighttime. 
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Further Study  
The research team encountered several aspects of freight modeling that merit further study, 

namely the following. 

Truck Types: It is recommended to develop methodologies and GPS data sources that 

distinguish and stratify different truck types (e.g., medium vs. heavy, short- vs. long-haul) to 

permit more precise modeling based on truck characteristics. A shortcoming of this project that 

should be addressed in future studies is the distinction between medium and heavy truck trips.  

This project was unable to estimate trips by these categories because the GPS data was not 

stratified by truck type.  This distinction is important for air quality planning, since majority of 

medium trucks (i.e., single-unit vehicles with 2-3 axles) have gasoline engines, while almost all 

heavy trucks (i.e., multi-axle tractor-trailer combinations) have diesel engines.  It should be 

possible for the GPS data to be stratified by truck type (or related data) without compromising 

the confidentiality that is necessary for data collection. 

Precise Origin and Destination Locations: Tour-based model can benefit from truck origins 

and destinations coded in latitude and longitude rather than aggregated at the TAZ level, which 

was the level of GPS data precision in this project. Moreover, more precise external station 

geocoding can improving modeling accuracy.  Finally better data on the universe of trucks in the 

study area and truck sampling rates will allow for disaggregate trip generation and will improve 

how the GPS truck movement sample is scaled up. 

Intermediate Stops: It can be useful to analyze the sequence of intermediate stops and 

associated land uses at the stop locations to understand true regional economic activities and 

commodity movements. Stop location land use can best be viewed in conjunction with localized 

logistics information. In the models used in this study, only internal-to-internal (I/I) tours were 

analyzed for intermediate stops because trips with an external component did not have 

complete origin and destination zone information. 
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Round-Trip Tours: This project did not investigate round-trip tours (i.e., tours that begin and 

end in the same zone) due to limited resources.  Future research should examine round-trip 

tours more carefully.  It may be necessary to enhance the tour main destination choice model 

(or impose a separate model) to estimate the likelihood that a truck tour will return to its starting 

point. 

Time of Day: With the Atlanta tour based model, the time of day model investigated the use of 

different coefficients and different variables for the midday, PM peak, and night periods (the 

utility of the AM peak period is defined as zero, by convention).  Upon further reflection, it might 

be more promising to stratify the variables and/or coefficients by PM peak vs. midday/night 

(jointly). As for the Birmingham model, the time of day model should be validated with traffic 

counts, once truck count data by hour becomes available. 

Complete Truck Inventory: Future models can benefit from a zone-level inventory of trucks, 

perhaps using state registration data with adjustments to account for trucks are garaged and 

registered in different locations.  A truck inventory would enable a true disaggregate logit tour 

frequency model. 

Through Trips: The Atlanta Regional Commission’s existing freight travel demand model was 

hampered in its ability to estimate through trips by the lack of observed truck movement 

data.  Lack of data was especially problematic during the model’s expansion from 13 counties to 

20 counties since there was not sufficient data to build an X/X trip tables for the larger 

region.  Therefore, the X/X trip tables for the 20-county region were extrapolated based on the 

assumption that through trips in the 20-county region would be similar to those in the 13-county 

region.  The tour-based freight model uses GPS data, which calculates through trips based on 

newer and more complete vehicle-specific truck movement records.  The proposed models did 

not handle through truck movements (X/X movements) in the same manner as other truck tours.  
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Through trucks were estimated conventionally, as trips between pairs of external stations.  

Conventional estimation omits the possibility of trip chaining into tours.  In reality, the GPS data 

indicates that X/X movements are more complex.  Some are actually tours and may make a 

brief stop in the analysis area.  The available data does not reveal whether the internal stops 

are related to goods movement or unrelated (e.g., to buy fuel or food).  Some X/X movements 

enter and leave the area via the same external station. These behaviors are inconsistent with 

conventional modeling techniques and raise the question as to whether X/X trips with internal 

stops should be considered one X/X tour or a pair of X/I and I/X tours.  Through movements are 

a relatively large share of total truck volumes, especially in Birmingham, which means that 

improving through trips can significantly affect model function. 

Overestimated Volumes on Small and Rural Roads: The Birmingham tour-based model 

overestimates truck volumes on lower-volume roads, especially in rural areas.  This bears 

further investigation.  The truck counts at the cordon should be verified more in detail. 

Local and Regional Difference: Researchers should also work with practitioners to implement 

tour-based truck models with GPS data in different settings to overcome local and regional 

characteristics. Tour-based models and GPS data have not yet been adopted as widely as their 

theoretical benefits and practical advantages might indicate.  These two models provide a 

foundation for other MPOs and DOTs to use GPS-derived truck data in freight demand models, 

and they identified and proposed solutions to challenges that organizations might encounter in 

implementing such a model.  Cooperation among researchers and practitioners can widely 

disseminate the model and lessons that this research provides. 

Multiple New Applications: Finally, researchers should examine the usefulness of the 

proposed models for a wide range of applications, including impacts on air quality models, traffic 

congestion forecasts, and investment decisions. The tour-based truck model with GPS-derived 
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data has been shown to be feasible for MPOs and DOTs, and lessons have been identified to 

improve the models.  While this study begins to compare the new models with legacy models, it 

addresses a small number of the potential applications and only a few of the settings.  Research 

and practice can both explore the differences in application between tour-based and 

conventional models as planners gain experience in tour-based modeling.  Understanding these 

differences can produce recommendations for making tour-based models more useful for air 

quality, congestion, decision making, and other functions. 
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